Spaces:
Runtime error
Runtime error
Commit
·
8ff8f45
1
Parent(s):
841fed0
updated mirnet
Browse files- enhance_me/commons.py +1 -1
- enhance_me/mirnet/mirnet.py +1 -5
- notebooks/enhance_me_train.ipynb +189 -276
enhance_me/commons.py
CHANGED
|
@@ -43,7 +43,7 @@ def closest_number(n, m):
|
|
| 43 |
def init_wandb(project_name, experiment_name, wandb_api_key):
|
| 44 |
if project_name is not None and experiment_name is not None:
|
| 45 |
os.environ["WANDB_API_KEY"] = wandb_api_key
|
| 46 |
-
wandb.init(project=project_name, name=experiment_name)
|
| 47 |
|
| 48 |
|
| 49 |
def download_lol_dataset():
|
|
|
|
| 43 |
def init_wandb(project_name, experiment_name, wandb_api_key):
|
| 44 |
if project_name is not None and experiment_name is not None:
|
| 45 |
os.environ["WANDB_API_KEY"] = wandb_api_key
|
| 46 |
+
wandb.init(project=project_name, name=experiment_name, sync_tensorboard=True)
|
| 47 |
|
| 48 |
|
| 49 |
def download_lol_dataset():
|
enhance_me/mirnet/mirnet.py
CHANGED
|
@@ -21,11 +21,7 @@ from ..commons import (
|
|
| 21 |
|
| 22 |
|
| 23 |
class MIRNet:
|
| 24 |
-
def __init__(
|
| 25 |
-
self,
|
| 26 |
-
experiment_name: str,
|
| 27 |
-
wandb_api_key=None,
|
| 28 |
-
) -> None:
|
| 29 |
self.experiment_name = experiment_name
|
| 30 |
if wandb_api_key is not None:
|
| 31 |
init_wandb("mirnet", experiment_name, wandb_api_key)
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
class MIRNet:
|
| 24 |
+
def __init__(self, experiment_name: str, wandb_api_key=None) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
self.experiment_name = experiment_name
|
| 26 |
if wandb_api_key is not None:
|
| 27 |
init_wandb("mirnet", experiment_name, wandb_api_key)
|
notebooks/enhance_me_train.ipynb
CHANGED
|
@@ -1,284 +1,197 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"colab": {
|
| 7 |
-
|
| 8 |
-
"provenance": [],
|
| 9 |
-
"collapsed_sections": [],
|
| 10 |
-
"machine_shape": "hm",
|
| 11 |
-
"authorship_tag": "ABX9TyN4LuJh6kWhbqxzA5s9sp7k",
|
| 12 |
-
"include_colab_link": true
|
| 13 |
-
},
|
| 14 |
-
"kernelspec": {
|
| 15 |
-
"display_name": "Python 3",
|
| 16 |
-
"name": "python3"
|
| 17 |
},
|
| 18 |
-
"
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
},
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
" Building wheel for pympler (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
| 73 |
-
" Building wheel for blinker (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
| 74 |
-
" Building wheel for pathtools (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
| 75 |
-
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
| 76 |
-
"jupyter-console 5.2.0 requires prompt-toolkit<2.0.0,>=1.0.0, but you have prompt-toolkit 3.0.23 which is incompatible.\n",
|
| 77 |
-
"google-colab 1.0.0 requires ipykernel~=4.10, but you have ipykernel 6.5.1 which is incompatible.\n",
|
| 78 |
-
"google-colab 1.0.0 requires ipython~=5.5.0, but you have ipython 7.30.0 which is incompatible.\u001b[0m\n"
|
| 79 |
-
]
|
| 80 |
-
}
|
| 81 |
-
]
|
| 82 |
-
},
|
| 83 |
-
{
|
| 84 |
-
"cell_type": "code",
|
| 85 |
-
"metadata": {
|
| 86 |
-
"id": "G_c4VtXWHR5l"
|
| 87 |
-
},
|
| 88 |
-
"source": [
|
| 89 |
-
"import sys\n",
|
| 90 |
-
"sys.path.append(\"./enhance-me\")\n",
|
| 91 |
-
"\n",
|
| 92 |
-
"from PIL import Image\n",
|
| 93 |
-
"from enhance_me import commons\n",
|
| 94 |
-
"from enhance_me.mirnet import MIRNet"
|
| 95 |
-
],
|
| 96 |
-
"execution_count": 2,
|
| 97 |
-
"outputs": []
|
| 98 |
-
},
|
| 99 |
-
{
|
| 100 |
-
"cell_type": "code",
|
| 101 |
-
"metadata": {
|
| 102 |
-
"id": "ZpBHbYaMIqP_"
|
| 103 |
-
},
|
| 104 |
-
"source": [
|
| 105 |
-
"#@title MIRNet Train Configs\n",
|
| 106 |
-
"\n",
|
| 107 |
-
"experiment_name = 'lol_dataset_256' #@param {type:\"string\"}\n",
|
| 108 |
-
"image_size = 128 #@param {type:\"integer\"}\n",
|
| 109 |
-
"dataset_label = 'lol' #@param [\"lol\"]\n",
|
| 110 |
-
"apply_random_horizontal_flip = True #@param {type:\"boolean\"}\n",
|
| 111 |
-
"apply_random_vertical_flip = True #@param {type:\"boolean\"}\n",
|
| 112 |
-
"apply_random_rotation = True #@param {type:\"boolean\"}\n",
|
| 113 |
-
"wandb_api_key = '' #@param {type:\"string\"}\n",
|
| 114 |
-
"val_split = 0.1 #@param {type:\"slider\", min:0.1, max:1.0, step:0.1}\n",
|
| 115 |
-
"batch_size = 4 #@param {type:\"integer\"}\n",
|
| 116 |
-
"num_recursive_residual_groups = 3 #@param {type:\"slider\", min:1, max:5, step:1}\n",
|
| 117 |
-
"num_multi_scale_residual_blocks = 2 #@param {type:\"slider\", min:1, max:5, step:1}\n",
|
| 118 |
-
"learning_rate = 1e-4 #@param {type:\"number\"}\n",
|
| 119 |
-
"epsilon = 1e-3 #@param {type:\"number\"}\n",
|
| 120 |
-
"epochs = 50 #@param {type:\"slider\", min:10, max:100, step:5}"
|
| 121 |
-
],
|
| 122 |
-
"execution_count": 3,
|
| 123 |
-
"outputs": []
|
| 124 |
-
},
|
| 125 |
-
{
|
| 126 |
-
"cell_type": "code",
|
| 127 |
-
"metadata": {
|
| 128 |
-
"colab": {
|
| 129 |
-
"base_uri": "https://localhost:8080/",
|
| 130 |
-
"height": 52
|
| 131 |
-
},
|
| 132 |
-
"id": "IVRoedqBIMuH",
|
| 133 |
-
"outputId": "53ca5beb-871a-4ec3-b757-173e09a15331"
|
| 134 |
-
},
|
| 135 |
-
"source": [
|
| 136 |
-
"mirnet = MIRNet(\n",
|
| 137 |
-
" experiment_name=experiment_name,\n",
|
| 138 |
-
" wandb_api_key=None if wandb_api_key == '' else wandb_api_key\n",
|
| 139 |
-
")"
|
| 140 |
-
],
|
| 141 |
-
"execution_count": 4,
|
| 142 |
-
"outputs": [
|
| 143 |
-
{
|
| 144 |
-
"output_type": "stream",
|
| 145 |
-
"name": "stderr",
|
| 146 |
-
"text": [
|
| 147 |
-
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33m19soumik-rakshit96\u001b[0m (use `wandb login --relogin` to force relogin)\n"
|
| 148 |
-
]
|
| 149 |
-
},
|
| 150 |
-
{
|
| 151 |
-
"output_type": "display_data",
|
| 152 |
-
"data": {
|
| 153 |
-
"text/html": [
|
| 154 |
-
"\n",
|
| 155 |
-
" Syncing run <strong><a href=\"https://wandb.ai/19soumik-rakshit96/mirnet/runs/3p3rc341\" target=\"_blank\">lol_dataset_256</a></strong> to <a href=\"https://wandb.ai/19soumik-rakshit96/mirnet\" target=\"_blank\">Weights & Biases</a> (<a href=\"https://docs.wandb.com/integrations/jupyter.html\" target=\"_blank\">docs</a>).<br/>\n",
|
| 156 |
-
"\n",
|
| 157 |
-
" "
|
| 158 |
-
],
|
| 159 |
-
"text/plain": [
|
| 160 |
-
"<IPython.core.display.HTML object>"
|
| 161 |
-
]
|
| 162 |
-
},
|
| 163 |
-
"metadata": {}
|
| 164 |
-
}
|
| 165 |
-
]
|
| 166 |
-
},
|
| 167 |
-
{
|
| 168 |
-
"cell_type": "code",
|
| 169 |
-
"metadata": {
|
| 170 |
-
"colab": {
|
| 171 |
-
"base_uri": "https://localhost:8080/"
|
| 172 |
-
},
|
| 173 |
-
"id": "O66Iwzx8IsGh",
|
| 174 |
-
"outputId": "0b6f1683-65d1-4737-a32f-d36b331d2bc2"
|
| 175 |
-
},
|
| 176 |
-
"source": [
|
| 177 |
-
"mirnet.build_datasets(\n",
|
| 178 |
-
" image_size=image_size,\n",
|
| 179 |
-
" dataset_label=dataset_label,\n",
|
| 180 |
-
" apply_random_horizontal_flip=apply_random_horizontal_flip,\n",
|
| 181 |
-
" apply_random_vertical_flip=apply_random_vertical_flip,\n",
|
| 182 |
-
" apply_random_rotation=apply_random_rotation,\n",
|
| 183 |
-
" val_split=val_split,\n",
|
| 184 |
-
" batch_size=batch_size\n",
|
| 185 |
-
")"
|
| 186 |
-
],
|
| 187 |
-
"execution_count": 5,
|
| 188 |
-
"outputs": [
|
| 189 |
-
{
|
| 190 |
-
"output_type": "stream",
|
| 191 |
-
"name": "stdout",
|
| 192 |
-
"text": [
|
| 193 |
-
"Downloading data from https://github.com/soumik12345/enhance-me/releases/download/v0.1/lol_dataset.zip\n",
|
| 194 |
-
"347176960/347171015 [==============================] - 13s 0us/step\n",
|
| 195 |
-
"347185152/347171015 [==============================] - 13s 0us/step\n",
|
| 196 |
-
"Number of train data points: 436\n",
|
| 197 |
-
"Number of validation data points: 49\n"
|
| 198 |
-
]
|
| 199 |
-
}
|
| 200 |
-
]
|
| 201 |
},
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
| 217 |
},
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
},
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
" [original_image, ground_truth, ground_truth],\n",
|
| 265 |
-
" [\"Original Image\", \"Ground Truth\", \"Enhanced Image\"],\n",
|
| 266 |
-
" (18, 18)\n",
|
| 267 |
-
" )"
|
| 268 |
-
],
|
| 269 |
-
"execution_count": null,
|
| 270 |
-
"outputs": []
|
| 271 |
},
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"colab_type": "text",
|
| 7 |
+
"id": "view-in-github"
|
| 8 |
+
},
|
| 9 |
+
"source": [
|
| 10 |
+
"<a href=\"https://colab.research.google.com/github/soumik12345/enhance-me/blob/mirnet/notebooks/enhance_me_train.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": null,
|
| 16 |
+
"metadata": {
|
| 17 |
"colab": {
|
| 18 |
+
"base_uri": "https://localhost:8080/"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
},
|
| 20 |
+
"id": "1JryaVhtBHij",
|
| 21 |
+
"outputId": "97ee6a4a-2479-4124-e96a-f0a792bdec46"
|
| 22 |
+
},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"!git clone https://github.com/soumik12345/enhance-me -b mirnet\n",
|
| 26 |
+
"!pip install -qqq wandb streamlit"
|
| 27 |
+
]
|
| 28 |
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": null,
|
| 32 |
+
"metadata": {
|
| 33 |
+
"id": "G_c4VtXWHR5l"
|
| 34 |
+
},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"import sys\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"sys.path.append(\"./enhance-me\")\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"from PIL import Image\n",
|
| 42 |
+
"from enhance_me import commons\n",
|
| 43 |
+
"from enhance_me.mirnet import MIRNet"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {
|
| 50 |
+
"id": "ZpBHbYaMIqP_"
|
| 51 |
+
},
|
| 52 |
+
"outputs": [],
|
| 53 |
+
"source": [
|
| 54 |
+
"# @title MIRNet Train Configs\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"experiment_name = \"lol_dataset_256\" # @param {type:\"string\"}\n",
|
| 57 |
+
"image_size = 128 # @param {type:\"integer\"}\n",
|
| 58 |
+
"dataset_label = \"lol\" # @param [\"lol\"]\n",
|
| 59 |
+
"apply_random_horizontal_flip = True # @param {type:\"boolean\"}\n",
|
| 60 |
+
"apply_random_vertical_flip = True # @param {type:\"boolean\"}\n",
|
| 61 |
+
"apply_random_rotation = True # @param {type:\"boolean\"}\n",
|
| 62 |
+
"wandb_api_key = \"\" # @param {type:\"string\"}\n",
|
| 63 |
+
"val_split = 0.1 # @param {type:\"slider\", min:0.1, max:1.0, step:0.1}\n",
|
| 64 |
+
"batch_size = 4 # @param {type:\"integer\"}\n",
|
| 65 |
+
"num_recursive_residual_groups = 3 # @param {type:\"slider\", min:1, max:5, step:1}\n",
|
| 66 |
+
"num_multi_scale_residual_blocks = 2 # @param {type:\"slider\", min:1, max:5, step:1}\n",
|
| 67 |
+
"learning_rate = 1e-4 # @param {type:\"number\"}\n",
|
| 68 |
+
"epsilon = 1e-3 # @param {type:\"number\"}\n",
|
| 69 |
+
"epochs = 50 # @param {type:\"slider\", min:10, max:100, step:5}"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"cell_type": "code",
|
| 74 |
+
"execution_count": null,
|
| 75 |
+
"metadata": {
|
| 76 |
+
"colab": {
|
| 77 |
+
"base_uri": "https://localhost:8080/",
|
| 78 |
+
"height": 52
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
},
|
| 80 |
+
"id": "IVRoedqBIMuH",
|
| 81 |
+
"outputId": "53ca5beb-871a-4ec3-b757-173e09a15331"
|
| 82 |
+
},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"mirnet = MIRNet(\n",
|
| 86 |
+
" experiment_name=experiment_name,\n",
|
| 87 |
+
" wandb_api_key=None if wandb_api_key == \"\" else wandb_api_key,\n",
|
| 88 |
+
")"
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"execution_count": null,
|
| 94 |
+
"metadata": {
|
| 95 |
+
"colab": {
|
| 96 |
+
"base_uri": "https://localhost:8080/"
|
| 97 |
},
|
| 98 |
+
"id": "O66Iwzx8IsGh",
|
| 99 |
+
"outputId": "0b6f1683-65d1-4737-a32f-d36b331d2bc2"
|
| 100 |
+
},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"mirnet.build_datasets(\n",
|
| 104 |
+
" image_size=image_size,\n",
|
| 105 |
+
" dataset_label=dataset_label,\n",
|
| 106 |
+
" apply_random_horizontal_flip=apply_random_horizontal_flip,\n",
|
| 107 |
+
" apply_random_vertical_flip=apply_random_vertical_flip,\n",
|
| 108 |
+
" apply_random_rotation=apply_random_rotation,\n",
|
| 109 |
+
" val_split=val_split,\n",
|
| 110 |
+
" batch_size=batch_size,\n",
|
| 111 |
+
")"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "code",
|
| 116 |
+
"execution_count": null,
|
| 117 |
+
"metadata": {
|
| 118 |
+
"id": "tsfKrBCsL_Bb"
|
| 119 |
+
},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": [
|
| 122 |
+
"mirnet.build_model(\n",
|
| 123 |
+
" num_recursive_residual_groups=num_recursive_residual_groups,\n",
|
| 124 |
+
" num_multi_scale_residual_blocks=num_multi_scale_residual_blocks,\n",
|
| 125 |
+
" learning_rate=learning_rate,\n",
|
| 126 |
+
" epsilon=epsilon,\n",
|
| 127 |
+
")"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": null,
|
| 133 |
+
"metadata": {
|
| 134 |
+
"colab": {
|
| 135 |
+
"base_uri": "https://localhost:8080/"
|
| 136 |
},
|
| 137 |
+
"id": "y3L9wlpkNziL",
|
| 138 |
+
"outputId": "5149f0e7-91f4-450f-c43a-1b6028692bbc"
|
| 139 |
+
},
|
| 140 |
+
"outputs": [],
|
| 141 |
+
"source": [
|
| 142 |
+
"history = mirnet.train(epochs=epochs)"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "code",
|
| 147 |
+
"execution_count": null,
|
| 148 |
+
"metadata": {
|
| 149 |
+
"colab": {
|
| 150 |
+
"background_save": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
},
|
| 152 |
+
"id": "daFKbgBkiyzc"
|
| 153 |
+
},
|
| 154 |
+
"outputs": [],
|
| 155 |
+
"source": [
|
| 156 |
+
"for index, low_image_file in enumerate(mirnet.test_low_images):\n",
|
| 157 |
+
" original_image = Image.open(low_image_file)\n",
|
| 158 |
+
" enhanced_image = mirnet.infer(original_image)\n",
|
| 159 |
+
" ground_truth = Image.open(mirnet.test_enhanced_images[index])\n",
|
| 160 |
+
" commons.plot_results(\n",
|
| 161 |
+
" [original_image, ground_truth, ground_truth],\n",
|
| 162 |
+
" [\"Original Image\", \"Ground Truth\", \"Enhanced Image\"],\n",
|
| 163 |
+
" (18, 18),\n",
|
| 164 |
+
" )"
|
| 165 |
+
]
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"cell_type": "code",
|
| 169 |
+
"execution_count": null,
|
| 170 |
+
"metadata": {
|
| 171 |
+
"id": "dO-IbNQHkB3R"
|
| 172 |
+
},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": []
|
| 175 |
+
}
|
| 176 |
+
],
|
| 177 |
+
"metadata": {
|
| 178 |
+
"accelerator": "GPU",
|
| 179 |
+
"colab": {
|
| 180 |
+
"authorship_tag": "ABX9TyN4LuJh6kWhbqxzA5s9sp7k",
|
| 181 |
+
"collapsed_sections": [],
|
| 182 |
+
"include_colab_link": true,
|
| 183 |
+
"machine_shape": "hm",
|
| 184 |
+
"name": "enhance-me-train.ipynb",
|
| 185 |
+
"provenance": []
|
| 186 |
+
},
|
| 187 |
+
"kernelspec": {
|
| 188 |
+
"display_name": "Python 3",
|
| 189 |
+
"name": "python3"
|
| 190 |
+
},
|
| 191 |
+
"language_info": {
|
| 192 |
+
"name": "python"
|
| 193 |
+
}
|
| 194 |
+
},
|
| 195 |
+
"nbformat": 4,
|
| 196 |
+
"nbformat_minor": 0
|
| 197 |
+
}
|