|
import pandas as pd |
|
from E_Model_utils import train_model, get_embeddings |
|
from E_Faiss_utils import load_faiss_index, normalize_embeddings |
|
from A_Preprocess import load_data |
|
|
|
|
|
data_file_path = r"C:\Users\serban.tica\Documents\Intent_detection\data\Pager_Intents.csv" |
|
data = load_data(data_file_path) |
|
intentions = data['intent'].tolist() |
|
|
|
|
|
models = { |
|
"mBERT": "bert-base-multilingual-cased", |
|
"XLM-R": "xlm-roberta-base", |
|
"Romanian BERT": "dumitrescustefan/bert-base-romanian-cased-v1" |
|
} |
|
|
|
|
|
for model_name, model_path in models.items(): |
|
print(f"Evaluating model: {model_name}") |
|
model = train_model(model_path) |
|
index = load_faiss_index(f"embeddings/{model_name}_vector_db.index") |
|
|
|
|
|
input_text = "exemplu de text" |
|
input_embedding = get_embeddings(model, [input_text]).cpu().numpy() |
|
normalized_embedding = normalize_embeddings(input_embedding) |
|
|
|
D, I = index.search(normalized_embedding, 1) |
|
intent = intentions[I[0][0]] |
|
|
|
print(f"Intenția identificată de {model_name}: {intent} cu nivel de încredere: {float(D[0][0])}") |
|
|