HF-LLM-Intent-Detection / src /Test_Load_embeddings_index_and_search.py
georgeek's picture
Transfer
5ecde30
import faiss
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
# Load the FAISS index
index_path = "embeddings/all-MiniLM-L6-v2_vector_db.index"
try:
index = faiss.read_index(index_path)
print(f"FAISS index loaded successfully from {index_path}")
except Exception as e:
print(f"Error loading FAISS index: {e}")
# Load the model
try:
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
# Example new text
new_text = ["Cat am de plata"]
print(f'The text is: {new_text}')
# Generate embeddings for the new text
try:
new_embeddings = model.encode(new_text)
print(f"Generated embeddings for new text: {new_embeddings[0]}")
except Exception as e:
print(f"Error generating embeddings: {e}")
# Convert new embeddings to float32
try:
new_embeddings = np.array(new_embeddings).astype('float32')
#print only the first new embedding
print(f"Converted new embeddings to float32: {new_embeddings[0]}")
except Exception as e:
print(f"Error converting embeddings to float32: {e}")
# Perform similarity search
try:
k = 3 # Number of nearest neighbors to retrieve
D, I = index.search(new_embeddings, k) # D: distances, I: indices
print(f"Similarity search results: Indices - {I}, Distances - {D}")
except Exception as e:
print(f"Error performing similarity search: {e}")
# Print results
for i, query in enumerate(new_text):
print(f"Query: {query}")
print(f"Nearest neighbors indices: {I[i]}")
print(f"Nearest neighbors distances: {D[i]}")
print()
# Load the CSV file
csv_file_path = r'C:\Users\serban.tica\Documents\tobi_llm_intent_recognition\data\Pager_Intents_Cleaned.csv'
try:
df = pd.read_csv(csv_file_path)
print(f"CSV file loaded successfully from {csv_file_path}")
except Exception as e:
print(f"Error loading CSV file: {e}")
# Retrieve the corresponding rows from the DataFrame
try:
for i, query in enumerate(new_text):
print(f"Query: {query}")
for idx in I[i]:
print(f"Index: {idx}, Row: {df.iloc[idx]}")
except Exception as e:
print(f"Error retrieving rows from DataFrame: {e}")