HF-LLM-Intent-Detection / src /Z_openAI_embeddings_test.py
georgeek's picture
Transfer
5ecde30
import openai
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import os
from dotenv import load_dotenv
# Initialize OpenAI client (replace with your API key)
load_dotenv() # take environment variables from .env.
api_key = os.getenv('OPENAI_API_KEY')
# Function to get OpenAI embeddings for a text input
def get_embedding(text, model="text-embedding-3-small"):
text = text.replace("\n", " ")
response = openai.Embedding.create(input=[text], model=model)
return response['data'][0]['embedding']
# Function to calculate similarity and return top N similar sentences (without modifying df)
def calculate_similarity(user_text, df, top_n=3):
# Get embedding for the user input text
user_embedding = np.array(get_embedding(user_text, model='text-embedding-ada-002')).reshape(1, -1)
# Calculate similarity for each sentence in the DataFrame without creating a new column
similarities = []
for _, row in df.iterrows():
similarity_score = cosine_similarity([row['ada_embeddings']], user_embedding)[0][0]
similarities.append((row['utterance'], similarity_score))
# Sort by similarity score (descending) and return the top_n most similar sentences
top_matches = sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]
# Print the results
print("Top similar sentences:")
for sentence, score in top_matches:
print(f"Sentence: {sentence}, Similarity: {score:.4f}")
return top_matches
def save_openai_embeddings(csv_file, model='text-embedding-3-small'):
# Load the CSV file
df = pd.read_csv(csv_file)
#print(df.head)
# Save the embeddings
df['ada_embeddings'] = df.utterance.apply(lambda x: get_embedding(x, model='text-embedding-3-small'))
df.to_csv('embeddings/openai_embeddings.csv', index=False)
print(f"Embeddings saved to embeddings/openai_embeddings.csv.")
# Only One time rutine: save_openai_embeddings('data/Pager_Intents_cleaned.csv')
# Load precomputed embeddings from CSV
df = pd.read_csv(r'C:\Users\serban.tica\Documents\tobi_llm_intent_recognition\embeddings\openai_embeddings.csv')
print(df.head)
df['ada_embeddings'] = df['ada_embeddings'].apply(eval).apply(np.array)
# Test user input
user_input = "Cat am de plata la ultima factura?"
# Calculate and print top 3 similar sentences
top_similar_reviews = calculate_similarity(user_input, df, top_n=3)