import pandas as pd from E_Model_utils import fine_tune_and_save_model from sentence_transformers import SentenceTransformer from A_Preprocess import load_pdf_data from pathlib import Path # Load the dataset from BASE_DIR BASE_DIR = Path(__file__).resolve().parents[1] data_file_path = BASE_DIR / "data" / "Pager_Intents_cleaned.csv" print(data_file_path) # Load the data data = load_pdf_data(str(data_file_path)) # OLDPATH data = load_pdf_data(r'C:\Users\ZZ029K826\Documents\GitHub\LLM_Intent_Recognition\data\Pager_Intents_cleaned.csv') # Specify the model name # 'intfloat/multilingual-e5-small' # 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2' # 'McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp' #llama # "multilingual-e5-small":"intfloat/multilingual-e5-small", "all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", "all-mpnet-base-v2":"sentence-transformers/all-mpnet-base-v2" #"bert-base-nli-mean-tokens":"sentence-transformers/bert-base-nli-mean-tokens", #"all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", "all-distilroberta-v1":"sentence-transformers/all-distilroberta-v1" # 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2' # "all-mpnet-base-v2":"sentence-transformers/all-mpnet-base-v2", # "bert-base-nli":"sentence-transformers/bert-base-nli-mean-tokens", # "all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", # "all-distilroberta-v1":"sentence-transformers/all-distilroberta-v1" # "bert-base-romanian-cased-v1": "sentence-transformers/bert-base-romanian-cased-v1", # "bert-base-romanian-uncased-v1": "sentence-transformers/dumitrescustefan/bert-base-romanian-uncased-v1", #"mBERT": "bert-base-multilingual-cased", "XLM-R": "xlm-roberta-base", "Romanian BERT": "dumitrescustefan/bert-base-romanian-cased-v1", "dumitrescustefan/bert-base-romanian-uncased-v1": "dumitrescustefan/bert-base-romanian-uncased-v1" # Generate and save embeddings for each model, "xlm-r-distilroberta-base-paraphrase-v1" # 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2' # 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2' model_name = 'BlackKakapo/stsb-xlm-r-multilingual-ro' # Fine-tune and save the model fine_tune_and_save_model(model_name, data)