from A_Preprocess import load_pdf_data, preprocess_data from E_Model_utils import load_model, get_embeddings from E_Faiss_utils import save_embeddings # Load and preprocess data data_file_path = r'C:\Users\serban.tica\Documents\tobi_llm_intent_recognition\data\Pager_Intents_Cleaned.csv' data = load_pdf_data(data_file_path) #data = preprocess_data(data) # Models to evaluate models = {"multilingual-e5-large":"intfloat/multilingual-e5-large"} #"multilingual-e5-small":"intfloat/multilingual-e5-small", "all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", "all-mpnet-base-v2":"sentence-transformers/all-mpnet-base-v2" #"bert-base-nli-mean-tokens":"sentence-transformers/bert-base-nli-mean-tokens", #"all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", "all-distilroberta-v1":"sentence-transformers/all-distilroberta-v1"} # 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2' # "all-mpnet-base-v2":"sentence-transformers/all-mpnet-base-v2", # "bert-base-nli":"sentence-transformers/bert-base-nli-mean-tokens", # "all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", # "all-distilroberta-v1":"sentence-transformers/all-distilroberta-v1" # "bert-base-romanian-cased-v1": "sentence-transformers/bert-base-romanian-cased-v1", # "bert-base-romanian-uncased-v1": "sentence-transformers/dumitrescustefan/bert-base-romanian-uncased-v1", #"mBERT": "bert-base-multilingual-cased", "XLM-R": "xlm-roberta-base", "Romanian BERT": "dumitrescustefan/bert-base-romanian-cased-v1", "dumitrescustefan/bert-base-romanian-uncased-v1": "dumitrescustefan/bert-base-romanian-uncased-v1" # Generate and save embeddings for each model, "xlm-r-distilroberta-base-paraphrase-v1" for model_name, model_path in models.items(): print(f"Processing model: {model_name}") model = load_model(model_path) texts = data['utterance'].tolist() embeddings = get_embeddings(model, texts) save_embeddings(embeddings, file_name=f"embeddings/{model_name}_vector_db.index")