import pandas as pd from E_Model_utils import train_model, get_embeddings from E_Faiss_utils import load_faiss_index, normalize_embeddings from A_Preprocess import load_data # Load data data_file_path = r"C:\Users\serban.tica\Documents\Intent_detection\data\Pager_Intents.csv" data = load_data(data_file_path) intentions = data['intent'].tolist() # Models to evaluate models = { "mBERT": "bert-base-multilingual-cased", "XLM-R": "xlm-roberta-base", "Romanian BERT": "dumitrescustefan/bert-base-romanian-cased-v1" } # Evaluate models for model_name, model_path in models.items(): print(f"Evaluating model: {model_name}") model = train_model(model_path) index = load_faiss_index(f"embeddings/{model_name}_vector_db.index") # Test with a sample input text input_text = "exemplu de text" input_embedding = get_embeddings(model, [input_text]).cpu().numpy() normalized_embedding = normalize_embeddings(input_embedding) D, I = index.search(normalized_embedding, 1) # Caută cel mai apropiat vecin intent = intentions[I[0][0]] print(f"Intenția identificată de {model_name}: {intent} cu nivel de încredere: {float(D[0][0])}")