import os import faiss import numpy as np from pathlib import Path import sys # Add the project directory to the path sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from import_Path import BASE_DIR def save_faiss_embeddings_index(embeddings, file_name): # Ensure embeddings are in float32 format if not isinstance(embeddings, np.ndarray): embeddings = embeddings.numpy() embeddings = embeddings.astype('float32') # Create the directory if it doesn't exist #os.makedirs(os.path.dirname(file_name), exist_ok=True) # Create a FAISS index index = faiss.IndexFlatL2(embeddings.shape[1]) # L2 distance index.add(embeddings) # Save the FAISS index # old faiss.write_index(index, file_name) index_path = BASE_DIR / "embeddings" / file_name faiss.write_index(index, str(index_path)) def load_faiss_index(index_path): index = faiss.read_index(index_path) return index def normalize_embeddings(embeddings): # Normalize embeddings embeddings = embeddings / np.linalg.norm(embeddings, axis=1)[:, None] return embeddings