File size: 15,203 Bytes
8af8283
 
 
 
 
 
 
 
 
 
 
 
 
f466cd7
8af8283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#@title Import required libraries
import os
import torch
import re
from tqdm import tqdm
import PIL
from PIL import Image

from typing import List, Optional, Tuple, Union

from torchvision import transforms as tfms
from diffusers import StableDiffusionPipeline, AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
# from focus_blur_utils import calculate_focus_blur_loss
# from transformers.modeling_attn_mask_utils import AttentionMaskConverter

class TextualInversion:
    def __init__(self, pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4", repo_id_embeds=["sd-concepts-library/matrix::with <hatman-matrix> concept"]):
        #@markdown `pretrained_model_name_or_path` which Stable Diffusion checkpoint you want to use. This should match the one used for training the embeddings.
        self.pretrained_model_name_or_path = pretrained_model_name_or_path
        #@title Load your concept here
    #@markdown Enter the `repo_id` for a concept you like (you can find pre-learned concepts in the public [SD Concepts Library](https://huggingface.co/sd-concepts-library))
        self.repo_id_embeds = [x.split("::")[0].split("/")[-1] for x in repo_id_embeds]
        self.prompts_suffixes = [x.split("::")[1] for x in repo_id_embeds]
       
       # Set device
        self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
        if "mps" == self.device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"

        #@title Load the Stable Diffusion pipeline
        # self.pipe = StableDiffusionPipeline.from_pretrained(
        #     pretrained_model_name_or_path,
        #     torch_dtype=torch.float16
        # ).to(self.device)

        # Load the autoencoder model which will be used to decode the latents into image space.
        self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
        # Load the tokenizer and text encoder to tokenize and encode the text.
        self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
        self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
        # The UNet model for generating the latents.
        self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
        # The noise scheduler
        self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)

        # To the GPU we go!
        self.vae = self.vae.to(self.device)
        self.text_encoder = self.text_encoder.to(self.device)
        self.unet = self.unet.to(self.device)
        
        # Access the token embedding layers
        # Token Embedding Layer
        self.token_emb_layer = self.text_encoder.text_model.embeddings.token_embedding 
        # Position Embedding Layer
        self.position_ids = self.text_encoder.text_model.embeddings.position_ids
        self.position_emb_layer = self.text_encoder.text_model.embeddings.position_embedding
        
        self.conceptsEmbeddings = []
        for index,repo_id in enumerate(self.repo_id_embeds):
            #@title Load the concept into pipeline
            concept_embed_lib = torch.load("sd-concepts-library/" + self.repo_id_embeds[index] +"_learned_embeds.bin") # load the concept learned embeddings
            print(self.repo_id_embeds[index])
            print(concept_embed_lib.keys())
            if self.repo_id_embeds[index] in concept_embed_lib.keys():
                concept_embed = concept_embed_lib[self.repo_id_embeds[index]] # Read the embedding value using the key i.e. concept_embed_lib['<birb-style>']
            else:
                first_key, concept_embed = next(iter(concept_embed_lib.items())) # Read the first key and the embedding value
            
            self.conceptsEmbeddings.append(concept_embed.to(self.device))
        print(f"len(self.conceptsEmbeddings): {len(self.conceptsEmbeddings)}")

    def _create_4d_causal_attention_mask(
        input_shape: Union[torch.Size, Tuple, List],
        dtype: torch.dtype,
        device: torch.device,
        past_key_values_length: int = 0,
        sliding_window: Optional[int] = None,
    ) -> Optional[torch.Tensor]:
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`

        Args:
            input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
                The input shape should be a tuple that defines `(batch_size, query_length)`.
            dtype (`torch.dtype`):
                The torch dtype the created mask shall have.
            device (`int`):
                The torch device the created mask shall have.
            sliding_window (`int`, *optional*):
                If the model uses windowed attention, a sliding window should be passed.
        """
        attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)

        key_value_length = past_key_values_length + input_shape[-1]
        attention_mask = attn_mask_converter.to_causal_4d(
            input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
        )

        return attention_mask 

    def get_output_embeds(self, input_embeddings):
        # CLIP's text model uses causal mask, so we prepare it here:
        bsz, seq_len = input_embeddings.shape[:2]
        # causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
        # causal_attention_mask = self._create_4d_causal_attention_mask(input_shape=(bsz, seq_len), dtype=input_embeddings.dtype, device=self.device)
        causal_attention_mask = self.text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)

        # Getting the output embeddings involves calling the model with passing output_hidden_states=True
        # so that it doesn't just return the pooled final predictions:
        encoder_outputs = self.text_encoder.text_model.encoder(
            inputs_embeds=input_embeddings,
            attention_mask=None, # We aren't using an attention mask so that can be None
            causal_attention_mask=causal_attention_mask.to(self.device),
            output_attentions=None,
            output_hidden_states=True, # We want the output embs not the final output
            return_dict=None,
        )

        # We're interested in the output hidden state only
        output = encoder_outputs[0]

        # There is a final layer norm we need to pass these through
        output = self.text_encoder.text_model.final_layer_norm(output)

        # And now they're ready!
        return output
    
    def set_timesteps(self, num_inference_steps):
        self.scheduler.set_timesteps(num_inference_steps)
        self.scheduler.timesteps = self.scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
        
    def pil_to_latent(self, input_im):
        # Single image -> single latent in a batch (so size 1, 4, 64, 64)
        with torch.no_grad():
            latent = self.vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(self.device)*2-1) # Note scaling
        return 0.18215 * latent.latent_dist.sample()

    def latents_to_pil(self, latents):
        # bath of latents -> list of images
        latents = (1 / 0.18215) * latents
        with torch.no_grad():
            image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
        images = (image * 255).round().astype("uint8")
        pil_images = [Image.fromarray(image) for image in images]
        return pil_images
    
    def grayscale_loss(self, images):
        """
        Calculate the grayscale loss, which measures how far the image is from being grayscale.
        A grayscale image has R = G = B for each pixel.
        
        Args:
            images (torch.Tensor): A tensor of shape (batch_size, 3, H, W) where 3 corresponds to 
                                the RGB channels of the image.
        
        Returns:
            torch.Tensor: A scalar loss value indicating how far the image is from being grayscale.
        """
        # Calculate the absolute difference between the channels
        # images[:, 0] -> Red channel, images[:, 1] -> Green channel, images[:, 2] -> Blue channel
        rg_diff = torch.abs(images[:, 0] - images[:, 1])  # R - G
        gb_diff = torch.abs(images[:, 1] - images[:, 2])  # G - B
        rb_diff = torch.abs(images[:, 0] - images[:, 2])  # R - B

        # Compute the mean of these differences across the batch and image dimensions
        loss = torch.mean(rg_diff + gb_diff + rb_diff)

        return loss

    def blue_loss(self, images):
        # How far are the blue channel values to 0.9:
        # error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel
        # Call grayscale loss instead of blue loss
        error = self.grayscale_loss(images)
        return error
    
    def update_latents_with_blue_loss(self, latents, noise_pred, sigma, blue_loss_scale=50, print_loss = False):
        # Requires grad on the latents
        latents = latents.detach().requires_grad_()

        # Get the predicted x0:
        latents_x0 = latents - sigma * noise_pred
        # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample

        # Decode to image space
        denoised_images = self.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)

        # Calculate loss
        loss = self.blue_loss(denoised_images) * blue_loss_scale

        # # Occasionally print it out
        if print_loss:
            print('loss:', loss.item())

        # Get gradient
        cond_grad = torch.autograd.grad(loss, latents)[0]

        # Modify the latents based on this gradient
        latents = latents.detach() - cond_grad * sigma**2

        return latents
    
    def generate_with_embs(self, text_embeddings, generator, max_length, batch_size = 1, consider_blue_loss = False):
        height = 512                        # default height of Stable Diffusion
        width = 512                         # default width of Stable Diffusion
        num_inference_steps = 50            # Number of denoising steps
        guidance_scale = 7.5                # Scale for classifier-free guidance
        
        uncond_input = self.tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
        )
        with torch.no_grad():
            uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        # Prep Scheduler
        self.set_timesteps(num_inference_steps)

        # Prep latents
        latents = torch.randn(
        (batch_size, self.unet.in_channels, height // 8, width // 8),
        generator=generator,
        # device=self.device
        )
        latents = latents.to(self.device)
        latents = latents * self.scheduler.init_noise_sigma

        # Loop
        for i, t in tqdm(enumerate(self.scheduler.timesteps), total=len(self.scheduler.timesteps)):
            # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
            latent_model_input = torch.cat([latents] * 2)
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            with torch.no_grad():
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

            # perform guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            if consider_blue_loss:
                print_loss = True if i%10==0 else False
                latents = self.update_latents_with_blue_loss(latents, noise_pred, self.scheduler.sigmas[i], print_loss=print_loss)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents).prev_sample

        return self.latents_to_pil(latents)

        
    def generate_image(self, prompt, concept_index, grayscale_image=False):
        # # Get the index of the selected concept
        # concept_index = self.repo_id_embeds.index(selected_concept)
        prompt_to_send =  prompt + " " + self.prompts_suffixes[concept_index]
        print(f"Selected concept_index: {concept_index}.")
        print(f"concept_index: {concept_index} Generating image for concept: {self.repo_id_embeds[concept_index]} with prompt: {prompt_to_send}")
        print(f"Grayscale image: {grayscale_image}")
        
        # replace <..> with a placeholder token that can be easily replaced with the embediing after tokenization
        placeholder_text = "gloucestershire " # 33789 is the token id 
        prompt_to_send = re.sub(r'<.*?>', placeholder_text, prompt_to_send)
        print(f"prompt after replacing placeholder token: {prompt_to_send}")
        # Tokenize
        text_input = self.tokenizer(prompt_to_send, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
        input_ids = text_input.input_ids.to(self.device)

        # Get token embeddings
        token_embeddings = self.token_emb_layer(input_ids)
        
        # The new embedding - our concept embedding for the special word token
        # replacement_token_embedding = birb_embed['<birb-style>'].to(torch_device)
        replacement_token_embedding = self.conceptsEmbeddings[concept_index].to(self.device)
        print(f"replacement_token_embedding.shape: {replacement_token_embedding.shape} and token_embeddings.shape: {token_embeddings.shape}")
        print(f"torch.where(input_ids[0]==33789): {torch.where(input_ids[0]==33789)}")
        # Replace the placholder token with the concept embedding
        token_embeddings[0, torch.where(input_ids[0]==33789)] = replacement_token_embedding.to(self.device)
        # print(f"If embedding is replaced: {token_embeddings[0, torch.where(input_ids[0]==33789)] == replacement_token_embedding}")
        
        B, T, C = token_embeddings.shape
        # Get the position embeddings
        position_embeddings = self.position_emb_layer(self.position_ids[:, :T])

        # Combine with pos embs
        input_embeddings = token_embeddings + position_embeddings

        #  Feed through to get final output embs
        modified_output_embeddings = self.get_output_embeds(input_embeddings)

        print(f"manual_seed: {concept_index + 11}")
        generator = torch.manual_seed(concept_index + 11)
        # And generate an image with this:
        result = self.generate_with_embs(modified_output_embeddings, generator=generator, max_length=T, consider_blue_loss=grayscale_image)[0]
        
        return result