Spaces:
Runtime error
Runtime error
Upload utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.document_loaders import ApifyDatasetLoader
|
| 2 |
+
from langchain.utilities import ApifyWrapper
|
| 3 |
+
from langchain.docstore.document import Document
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.embeddings.cohere import CohereEmbeddings
|
| 6 |
+
from langchain.vectorstores.deeplake import DeepLake
|
| 7 |
+
from langchain_cohere import CohereRerank
|
| 8 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 9 |
+
from langchain.memory import ConversationBufferWindowMemory
|
| 10 |
+
import os
|
| 11 |
+
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
|
| 12 |
+
from langchain_groq import ChatGroq
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
def get_and_load_data():
|
| 17 |
+
apify_key = os.getenv("apify")
|
| 18 |
+
|
| 19 |
+
apify = ApifyWrapper()
|
| 20 |
+
|
| 21 |
+
loader = apify.call_actor(
|
| 22 |
+
actor_id="apify/website-content-crawler",
|
| 23 |
+
run_input={"startUrls": [{"url": "https://en.wikipedia.org/wiki/Artificial_intelligence"}]},
|
| 24 |
+
dataset_mapping_function=lambda dataset_item: Document(
|
| 25 |
+
page_content=dataset_item["text"] if dataset_item["text"] else "No content available",
|
| 26 |
+
metadata={
|
| 27 |
+
"source": dataset_item["url"],
|
| 28 |
+
"title": dataset_item["metadata"]["title"]
|
| 29 |
+
}
|
| 30 |
+
),
|
| 31 |
+
)
|
| 32 |
+
docs = loader.load()
|
| 33 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 34 |
+
chunk_size=1000, chunk_overlap=20, length_function=len
|
| 35 |
+
)
|
| 36 |
+
docs_split = text_splitter.split_documents(docs)
|
| 37 |
+
embeddings = CohereEmbeddings(model="embed-english-v2.0")
|
| 38 |
+
username = "gneyapandya1234"
|
| 39 |
+
db_id= "educational_chatbot"
|
| 40 |
+
|
| 41 |
+
dbs = DeepLake(dataset_path=f"hub://{username}/{db_id}", embedding_function=embeddings)
|
| 42 |
+
dbs.add_documents(docs_split)
|
| 43 |
+
|
| 44 |
+
def deeplake():
|
| 45 |
+
embeddings= CohereEmbeddings(model = "embed-english-v2.0")
|
| 46 |
+
dbs = DeepLake(
|
| 47 |
+
dataset_path="hub://gneyapandya1234/educational_chatbot",
|
| 48 |
+
read_only=True,
|
| 49 |
+
embedding_function= embeddings
|
| 50 |
+
)
|
| 51 |
+
retriever = dbs.as_retriever()
|
| 52 |
+
retriever.search_kwargs["distance_metric"] = "cos"
|
| 53 |
+
retriever.search_kwargs["fetch_k"] = 20
|
| 54 |
+
# retriever.search_kwargs["maximal_marginal_relevance"] = True
|
| 55 |
+
retriever.search_kwargs["k"] = 20
|
| 56 |
+
|
| 57 |
+
compressor = CohereRerank(
|
| 58 |
+
model = "rerank-english-v2.0",
|
| 59 |
+
top_n=5
|
| 60 |
+
)
|
| 61 |
+
compressor_retriever = ContextualCompressionRetriever(
|
| 62 |
+
base_compressor = compressor , base_retriever=retriever
|
| 63 |
+
)
|
| 64 |
+
print("DOne")
|
| 65 |
+
return dbs, compressor_retriever, retriever
|
| 66 |
+
|
| 67 |
+
def memory():
|
| 68 |
+
mem = ConversationBufferWindowMemory(
|
| 69 |
+
k=3,
|
| 70 |
+
memory_key="chat_history",
|
| 71 |
+
return_messages=True,
|
| 72 |
+
output_key="answer"
|
| 73 |
+
)
|
| 74 |
+
return mem
|
| 75 |
+
def create_llm():
|
| 76 |
+
llm = ChatGroq(api_key= os.getenv("GROQ_API_KEY"),model="llama3-70b-8192")
|
| 77 |
+
return llm
|
| 78 |
+
|
| 79 |
+
def chain(llm,compression_retriever,memory):
|
| 80 |
+
qa = ConversationalRetrievalChain.from_llm(
|
| 81 |
+
llm = llm,
|
| 82 |
+
memory= memory,
|
| 83 |
+
retriever= compression_retriever,
|
| 84 |
+
verbose= True,
|
| 85 |
+
return_source_documents=True
|
| 86 |
+
)
|
| 87 |
+
return qa
|
| 88 |
+
def final_function():
|
| 89 |
+
llm = create_llm()
|
| 90 |
+
mem =memory()
|
| 91 |
+
dbs, compressor_retriever, retriever = deeplake()
|
| 92 |
+
qa= chain(llm,compressor_retriever,mem)
|
| 93 |
+
return qa, mem
|