updating with bedtime story code
Browse files
app.py
CHANGED
|
@@ -1,13 +1,20 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def plex(input_text):
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
iface=gr.Interface(
|
| 13 |
fn=plex,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments, pipeline
|
| 4 |
+
from accelerate import Accelerator
|
| 5 |
+
accelerator = Accelerator(cpu=True)
|
| 6 |
|
| 7 |
+
# def greet(name):
|
| 8 |
+
# return "Hello " + name + "!!"
|
| 9 |
+
|
| 10 |
+
tokenizer = accelerator.prepare(AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125m"))
|
| 11 |
+
model = accelerator.prepare(AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125m"))
|
| 12 |
|
| 13 |
def plex(input_text):
|
| 14 |
+
mnputs = tokenizer(input_text, return_tensors='pt')
|
| 15 |
+
prediction = model.generate(mnputs['input_ids'], min_length=20, max_length=150, num_return_sequences=1)
|
| 16 |
+
lines = tokenizer.decode(prediction[0]).splitlines()
|
| 17 |
+
return lines[0]
|
| 18 |
|
| 19 |
iface=gr.Interface(
|
| 20 |
fn=plex,
|