Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration, AutoModel, AutoTokenizer, AutoModelForCausalLM | |
| from qwen_vl_utils import process_vision_info | |
| import numpy as np | |
| import os | |
| from datetime import datetime | |
| import subprocess | |
| import torch.nn as nn | |
| subprocess.run('pip install flash-attn --no-build-isolation', shell=True) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN", None) | |
| # Initialize Florence model | |
| florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval() | |
| florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True) | |
| # Initialize Qwen2-VL-2B model | |
| qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval() | |
| qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
| # Add these new imports and constants | |
| CLIP_PATH = "google/siglip-so400m-patch14-384" | |
| VLM_PROMPT = "A descriptive caption for this image:\n" | |
| MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B" | |
| CHECKPOINT_PATH = "wpkklhc6" | |
| class ImageAdapter(nn.Module): | |
| def __init__(self, input_features: int, output_features: int): | |
| super().__init__() | |
| self.linear1 = nn.Linear(input_features, output_features) | |
| self.activation = nn.GELU() | |
| self.linear2 = nn.Linear(output_features, output_features) | |
| def forward(self, vision_outputs: torch.Tensor): | |
| x = self.linear1(vision_outputs) | |
| x = self.activation(x) | |
| x = self.linear2(x) | |
| return x | |
| # Load CLIP | |
| clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) | |
| clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model | |
| clip_model.eval() | |
| clip_model.requires_grad_(False) | |
| clip_model.to(device) | |
| # Tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False, token=HF_TOKEN) | |
| # LLM | |
| text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16, token=HF_TOKEN) | |
| text_model.eval() | |
| # Image Adapter | |
| image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) | |
| image_adapter.load_state_dict(torch.load(f"{CHECKPOINT_PATH}/image_adapter.pt", map_location="cpu")) | |
| image_adapter.eval() | |
| image_adapter.to(device) | |
| def florence_caption(image): | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(image) | |
| inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
| generated_ids = florence_model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| early_stopping=False, | |
| do_sample=False, | |
| num_beams=3, | |
| ) | |
| generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = florence_processor.post_process_generation( | |
| generated_text, | |
| task="<MORE_DETAILED_CAPTION>", | |
| image_size=(image.width, image.height) | |
| ) | |
| return parsed_answer["<MORE_DETAILED_CAPTION>"] | |
| def array_to_image_path(image_array): | |
| img = Image.fromarray(np.uint8(image_array)) | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"image_{timestamp}.png" | |
| img.save(filename) | |
| full_path = os.path.abspath(filename) | |
| return full_path | |
| def qwen_caption(image): | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(np.uint8(image)) | |
| image_path = array_to_image_path(np.array(image)) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image_path, | |
| }, | |
| {"type": "text", "text": "Describe this image in great detail in one paragraph."}, | |
| ], | |
| } | |
| ] | |
| text = qwen_processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = qwen_processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to(device) | |
| generated_ids = qwen_model.generate(**inputs, max_new_tokens=256) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = qwen_processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] | |
| def joycaption(image): | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(np.uint8(image)) | |
| # Preprocess image | |
| image = clip_processor(images=image, return_tensors='pt').pixel_values | |
| image = image.to(device) | |
| # Tokenize the prompt | |
| prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) | |
| # Embed image | |
| with torch.amp.autocast_mode.autocast(device_type='cuda', enabled=True): | |
| vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) | |
| image_features = vision_outputs.hidden_states[-2] | |
| embedded_images = image_adapter(image_features) | |
| embedded_images = embedded_images.to(device) | |
| # Embed prompt | |
| prompt_embeds = text_model.model.embed_tokens(prompt.to(device)) | |
| embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=device, dtype=torch.int64)) | |
| # Construct prompts | |
| inputs_embeds = torch.cat([ | |
| embedded_bos.expand(embedded_images.shape[0], -1, -1), | |
| embedded_images.to(dtype=embedded_bos.dtype), | |
| prompt_embeds.expand(embedded_images.shape[0], -1, -1), | |
| ], dim=1) | |
| input_ids = torch.cat([ | |
| torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), | |
| torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), | |
| prompt, | |
| ], dim=1).to(device) | |
| attention_mask = torch.ones_like(input_ids) | |
| generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) | |
| # Trim off the prompt | |
| generate_ids = generate_ids[:, input_ids.shape[1]:] | |
| if generate_ids[0][-1] == tokenizer.eos_token_id: | |
| generate_ids = generate_ids[:, :-1] | |
| caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] | |
| return caption.strip() |