freddyaboulton HF staff commited on
Commit
9949d56
·
verified ·
1 Parent(s): 1cd348f

Commit 1: Add 50 file(s)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +6 -7
  3. demos/audio_debugger/cantina.wav +0 -0
  4. demos/audio_debugger/run.ipynb +1 -0
  5. demos/audio_debugger/run.py +38 -0
  6. demos/blocks_essay/run.ipynb +1 -0
  7. demos/blocks_essay/run.py +51 -0
  8. demos/blocks_group/run.ipynb +1 -0
  9. demos/blocks_group/run.py +110 -0
  10. demos/blocks_js_methods/run.ipynb +1 -0
  11. demos/blocks_js_methods/run.py +41 -0
  12. demos/blocks_layout/run.ipynb +1 -0
  13. demos/blocks_layout/run.py +37 -0
  14. demos/blocks_multiple_event_triggers/requirements.txt +3 -0
  15. demos/blocks_multiple_event_triggers/run.ipynb +1 -0
  16. demos/blocks_multiple_event_triggers/run.py +38 -0
  17. demos/blocks_update/run.ipynb +1 -0
  18. demos/blocks_update/run.py +45 -0
  19. demos/calculator/examples/log.csv +0 -0
  20. demos/calculator/run.ipynb +1 -0
  21. demos/calculator/run.py +34 -0
  22. demos/calculator/screenshot.gif +3 -0
  23. demos/cancel_events/run.ipynb +1 -0
  24. demos/cancel_events/run.py +67 -0
  25. demos/chatbot_multimodal/run.ipynb +1 -0
  26. demos/chatbot_multimodal/run.py +48 -0
  27. demos/chatbot_multimodal/tuples_testcase.py +46 -0
  28. demos/chatinterface_streaming_echo/run.ipynb +1 -0
  29. demos/chatinterface_streaming_echo/run.py +18 -0
  30. demos/clear_components/__init__.py +0 -0
  31. demos/clear_components/requirements.txt +3 -0
  32. demos/clear_components/run.ipynb +1 -0
  33. demos/clear_components/run.py +174 -0
  34. demos/code/file.css +11 -0
  35. demos/code/run.ipynb +1 -0
  36. demos/code/run.py +38 -0
  37. demos/fake_diffusion_with_gif/requirements.txt +3 -0
  38. demos/fake_diffusion_with_gif/run.ipynb +1 -0
  39. demos/fake_diffusion_with_gif/run.py +45 -0
  40. demos/fake_gan/DESCRIPTION.md +1 -0
  41. demos/fake_gan/run.ipynb +1 -0
  42. demos/fake_gan/run.py +31 -0
  43. demos/file_explorer_component_events/dir1/bar.txt +0 -0
  44. demos/file_explorer_component_events/dir1/foo.txt +0 -0
  45. demos/file_explorer_component_events/dir2/baz.png +0 -0
  46. demos/file_explorer_component_events/dir2/foo.png +0 -0
  47. demos/file_explorer_component_events/dir3/dir3_bar.log +0 -0
  48. demos/file_explorer_component_events/dir3/dir3_foo.txt +0 -0
  49. demos/file_explorer_component_events/dir3/dir4/dir5/dir5_foo.txt +0 -0
  50. demos/file_explorer_component_events/dir3/dir4/dir7/dir7_foo.txt +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ demos/calculator/screenshot.gif filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,12 +1,11 @@
 
1
  ---
2
- title: Pr 10345 All Demos
3
- emoji: 🚀
4
- colorFrom: gray
5
- colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 5.12.0
8
- app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+
2
  ---
3
+ title: pr-10345-all-demos
4
+ emoji: 💩
5
+ colorFrom: indigo
6
+ colorTo: indigo
7
  sdk: gradio
8
  sdk_version: 5.12.0
9
+ app_file: run.py
10
  pinned: false
11
  ---
 
 
demos/audio_debugger/cantina.wav ADDED
Binary file (132 kB). View file
 
demos/audio_debugger/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: audio_debugger"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/audio_debugger/cantina.wav"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import subprocess\n", "import os\n", "\n", "audio_file = os.path.join(os.path.abspath(''), \"cantina.wav\")\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Tab(\"Audio\"):\n", " gr.Audio(audio_file)\n", " with gr.Tab(\"Interface\"):\n", " gr.Interface(\n", " lambda x: x, \"audio\", \"audio\", examples=[audio_file], cache_examples=True\n", " )\n", " with gr.Tab(\"Streaming\"):\n", " gr.Interface(\n", " lambda x: x,\n", " gr.Audio(streaming=True),\n", " \"audio\",\n", " examples=[audio_file],\n", " cache_examples=True,\n", " )\n", " with gr.Tab(\"console\"):\n", " ip = gr.Textbox(label=\"User IP Address\")\n", " gr.Interface(\n", " lambda cmd: subprocess.run([cmd], capture_output=True, shell=True, check=False)\n", " .stdout.decode(\"utf-8\")\n", " .strip(),\n", " \"text\",\n", " \"text\",\n", " )\n", "\n", " def get_ip(request: gr.Request):\n", " return request.client.host\n", "\n", " demo.load(get_ip, None, ip)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/audio_debugger/run.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import subprocess
3
+ import os
4
+
5
+ audio_file = os.path.join(os.path.dirname(__file__), "cantina.wav")
6
+
7
+ with gr.Blocks() as demo:
8
+ with gr.Tab("Audio"):
9
+ gr.Audio(audio_file)
10
+ with gr.Tab("Interface"):
11
+ gr.Interface(
12
+ lambda x: x, "audio", "audio", examples=[audio_file], cache_examples=True
13
+ )
14
+ with gr.Tab("Streaming"):
15
+ gr.Interface(
16
+ lambda x: x,
17
+ gr.Audio(streaming=True),
18
+ "audio",
19
+ examples=[audio_file],
20
+ cache_examples=True,
21
+ )
22
+ with gr.Tab("console"):
23
+ ip = gr.Textbox(label="User IP Address")
24
+ gr.Interface(
25
+ lambda cmd: subprocess.run([cmd], capture_output=True, shell=True, check=False)
26
+ .stdout.decode("utf-8")
27
+ .strip(),
28
+ "text",
29
+ "text",
30
+ )
31
+
32
+ def get_ip(request: gr.Request):
33
+ return request.client.host
34
+
35
+ demo.load(get_ip, None, ip)
36
+
37
+ if __name__ == "__main__":
38
+ demo.launch()
demos/blocks_essay/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_essay"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "countries_cities_dict = {\n", " \"USA\": [\"New York\", \"Los Angeles\", \"Chicago\"],\n", " \"Canada\": [\"Toronto\", \"Montreal\", \"Vancouver\"],\n", " \"Pakistan\": [\"Karachi\", \"Lahore\", \"Islamabad\"],\n", "}\n", "\n", "def change_textbox(choice):\n", " if choice == \"short\":\n", " return gr.Textbox(lines=2, visible=True), gr.Button(interactive=True)\n", " elif choice == \"long\":\n", " return gr.Textbox(lines=8, visible=True, value=\"Lorem ipsum dolor sit amet\"), gr.Button(interactive=True)\n", " else:\n", " return gr.Textbox(visible=False), gr.Button(interactive=False)\n", "\n", "with gr.Blocks() as demo:\n", " radio = gr.Radio(\n", " [\"short\", \"long\", \"none\"], label=\"What kind of essay would you like to write?\"\n", " )\n", " text = gr.Textbox(lines=2, interactive=True, show_copy_button=True)\n", "\n", " with gr.Row():\n", " num = gr.Number(minimum=0, maximum=100, label=\"input\")\n", " out = gr.Number(label=\"output\")\n", " minimum_slider = gr.Slider(0, 100, 0, label=\"min\")\n", " maximum_slider = gr.Slider(0, 100, 100, label=\"max\")\n", " submit_btn = gr.Button(\"Submit\", variant=\"primary\")\n", "\n", " with gr.Row():\n", " country = gr.Dropdown(list(countries_cities_dict.keys()), label=\"Country\")\n", " cities = gr.Dropdown([], label=\"Cities\")\n", " @country.change(inputs=country, outputs=cities)\n", " def update_cities(country):\n", " cities = list(countries_cities_dict[country])\n", " return gr.Dropdown(choices=cities, value=cities[0], interactive=True)\n", "\n", " def reset_bounds(minimum, maximum):\n", " return gr.Number(minimum=minimum, maximum=maximum)\n", "\n", " radio.change(fn=change_textbox, inputs=radio, outputs=[text, submit_btn])\n", " gr.on(\n", " [minimum_slider.change, maximum_slider.change],\n", " reset_bounds,\n", " [minimum_slider, maximum_slider],\n", " outputs=num,\n", " )\n", " num.submit(lambda x: x, num, out)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/blocks_essay/run.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ countries_cities_dict = {
4
+ "USA": ["New York", "Los Angeles", "Chicago"],
5
+ "Canada": ["Toronto", "Montreal", "Vancouver"],
6
+ "Pakistan": ["Karachi", "Lahore", "Islamabad"],
7
+ }
8
+
9
+ def change_textbox(choice):
10
+ if choice == "short":
11
+ return gr.Textbox(lines=2, visible=True), gr.Button(interactive=True)
12
+ elif choice == "long":
13
+ return gr.Textbox(lines=8, visible=True, value="Lorem ipsum dolor sit amet"), gr.Button(interactive=True)
14
+ else:
15
+ return gr.Textbox(visible=False), gr.Button(interactive=False)
16
+
17
+ with gr.Blocks() as demo:
18
+ radio = gr.Radio(
19
+ ["short", "long", "none"], label="What kind of essay would you like to write?"
20
+ )
21
+ text = gr.Textbox(lines=2, interactive=True, show_copy_button=True)
22
+
23
+ with gr.Row():
24
+ num = gr.Number(minimum=0, maximum=100, label="input")
25
+ out = gr.Number(label="output")
26
+ minimum_slider = gr.Slider(0, 100, 0, label="min")
27
+ maximum_slider = gr.Slider(0, 100, 100, label="max")
28
+ submit_btn = gr.Button("Submit", variant="primary")
29
+
30
+ with gr.Row():
31
+ country = gr.Dropdown(list(countries_cities_dict.keys()), label="Country")
32
+ cities = gr.Dropdown([], label="Cities")
33
+ @country.change(inputs=country, outputs=cities)
34
+ def update_cities(country):
35
+ cities = list(countries_cities_dict[country])
36
+ return gr.Dropdown(choices=cities, value=cities[0], interactive=True)
37
+
38
+ def reset_bounds(minimum, maximum):
39
+ return gr.Number(minimum=minimum, maximum=maximum)
40
+
41
+ radio.change(fn=change_textbox, inputs=radio, outputs=[text, submit_btn])
42
+ gr.on(
43
+ [minimum_slider.change, maximum_slider.change],
44
+ reset_bounds,
45
+ [minimum_slider, maximum_slider],
46
+ outputs=num,
47
+ )
48
+ num.submit(lambda x: x, num, out)
49
+
50
+ if __name__ == "__main__":
51
+ demo.launch()
demos/blocks_group/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_group"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "def greet(name):\n", " return \"Hello \" + name + \"!\"\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"### This is a couple of elements without any gr.Group. Form elements naturally group together anyway.\")\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " gr.Image()\n", " gr.Slider()\n", "\n", " gr.Markdown(\"### This is the same set put in a gr.Group.\")\n", " with gr.Group():\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " gr.Image()\n", " gr.Slider()\n", "\n", " gr.Markdown(\"### Now in a Row, no group.\")\n", " with gr.Row():\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " gr.Image()\n", " gr.Slider()\n", "\n", " gr.Markdown(\"### Now in a Row in a group.\")\n", " with gr.Group():\n", " with gr.Row():\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " gr.Image()\n", " gr.Slider()\n", "\n", " gr.Markdown(\"### Several rows grouped together.\")\n", " with gr.Group():\n", " with gr.Row():\n", " gr.Textbox(\"A\")\n", " gr.Number(3)\n", " gr.Button()\n", " with gr.Row():\n", " gr.Image()\n", " gr.Audio()\n", "\n", " gr.Markdown(\"### Several columns grouped together. If columns are uneven, there is a gray group background.\")\n", " with gr.Group():\n", " with gr.Row():\n", " with gr.Column():\n", " name = gr.Textbox(label=\"Name\")\n", " btn = gr.Button(\"Hello\")\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True)\n", " gr.Number()\n", " gr.Textbox()\n", " with gr.Column():\n", " gr.Image()\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True)\n", " with gr.Row():\n", " gr.Number(scale=2)\n", " gr.Textbox()\n", "\n", " gr.Markdown(\"### container=False removes label, padding, and block border, placing elements 'directly' on background.\")\n", " gr.Radio([1,2,3], container=False)\n", " gr.Textbox(container=False)\n", " gr.Image(\"https://picsum.photos/id/237/200/300\", container=False, height=200)\n", "\n", " gr.Markdown(\"### Textbox, Dropdown, and Number input boxes takes up full space when within a group without a container.\")\n", "\n", " with gr.Group():\n", " name = gr.Textbox(label=\"Name\")\n", " output = gr.Textbox(show_label=False, container=False)\n", " greet_btn = gr.Button(\"Greet\")\n", " with gr.Row():\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True, container=False)\n", " gr.Textbox(container=False)\n", " gr.Number(container=False)\n", " gr.Image(height=100)\n", " greet_btn.click(fn=greet, inputs=name, outputs=output, api_name=\"greet\")\n", "\n", " gr.Markdown(\"### More examples\")\n", "\n", " with gr.Group():\n", " gr.Chatbot()\n", " with gr.Row():\n", " name = gr.Textbox(label=\"Prompot\", container=False)\n", " go = gr.Button(\"go\", scale=0)\n", "\n", " with gr.Column():\n", " gr.Radio([1,2,3], container=False)\n", " gr.Slider(0, 20, container=False)\n", "\n", " with gr.Group():\n", " with gr.Row():\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True, container=False, elem_id=\"here2\")\n", " gr.Number(container=False)\n", " gr.Textbox(container=False)\n", "\n", " with gr.Row():\n", " with gr.Column():\n", " gr.Dropdown([\"a\", \"b\", \"c\"], interactive=True, container=False, elem_id=\"here2\")\n", " with gr.Column():\n", " gr.Number(container=False)\n", " with gr.Column():\n", " gr.Textbox(container=False)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/blocks_group/run.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def greet(name):
4
+ return "Hello " + name + "!"
5
+
6
+ with gr.Blocks() as demo:
7
+ gr.Markdown("### This is a couple of elements without any gr.Group. Form elements naturally group together anyway.")
8
+ gr.Textbox("A")
9
+ gr.Number(3)
10
+ gr.Button()
11
+ gr.Image()
12
+ gr.Slider()
13
+
14
+ gr.Markdown("### This is the same set put in a gr.Group.")
15
+ with gr.Group():
16
+ gr.Textbox("A")
17
+ gr.Number(3)
18
+ gr.Button()
19
+ gr.Image()
20
+ gr.Slider()
21
+
22
+ gr.Markdown("### Now in a Row, no group.")
23
+ with gr.Row():
24
+ gr.Textbox("A")
25
+ gr.Number(3)
26
+ gr.Button()
27
+ gr.Image()
28
+ gr.Slider()
29
+
30
+ gr.Markdown("### Now in a Row in a group.")
31
+ with gr.Group():
32
+ with gr.Row():
33
+ gr.Textbox("A")
34
+ gr.Number(3)
35
+ gr.Button()
36
+ gr.Image()
37
+ gr.Slider()
38
+
39
+ gr.Markdown("### Several rows grouped together.")
40
+ with gr.Group():
41
+ with gr.Row():
42
+ gr.Textbox("A")
43
+ gr.Number(3)
44
+ gr.Button()
45
+ with gr.Row():
46
+ gr.Image()
47
+ gr.Audio()
48
+
49
+ gr.Markdown("### Several columns grouped together. If columns are uneven, there is a gray group background.")
50
+ with gr.Group():
51
+ with gr.Row():
52
+ with gr.Column():
53
+ name = gr.Textbox(label="Name")
54
+ btn = gr.Button("Hello")
55
+ gr.Dropdown(["a", "b", "c"], interactive=True)
56
+ gr.Number()
57
+ gr.Textbox()
58
+ with gr.Column():
59
+ gr.Image()
60
+ gr.Dropdown(["a", "b", "c"], interactive=True)
61
+ with gr.Row():
62
+ gr.Number(scale=2)
63
+ gr.Textbox()
64
+
65
+ gr.Markdown("### container=False removes label, padding, and block border, placing elements 'directly' on background.")
66
+ gr.Radio([1,2,3], container=False)
67
+ gr.Textbox(container=False)
68
+ gr.Image("https://picsum.photos/id/237/200/300", container=False, height=200)
69
+
70
+ gr.Markdown("### Textbox, Dropdown, and Number input boxes takes up full space when within a group without a container.")
71
+
72
+ with gr.Group():
73
+ name = gr.Textbox(label="Name")
74
+ output = gr.Textbox(show_label=False, container=False)
75
+ greet_btn = gr.Button("Greet")
76
+ with gr.Row():
77
+ gr.Dropdown(["a", "b", "c"], interactive=True, container=False)
78
+ gr.Textbox(container=False)
79
+ gr.Number(container=False)
80
+ gr.Image(height=100)
81
+ greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
82
+
83
+ gr.Markdown("### More examples")
84
+
85
+ with gr.Group():
86
+ gr.Chatbot()
87
+ with gr.Row():
88
+ name = gr.Textbox(label="Prompot", container=False)
89
+ go = gr.Button("go", scale=0)
90
+
91
+ with gr.Column():
92
+ gr.Radio([1,2,3], container=False)
93
+ gr.Slider(0, 20, container=False)
94
+
95
+ with gr.Group():
96
+ with gr.Row():
97
+ gr.Dropdown(["a", "b", "c"], interactive=True, container=False, elem_id="here2")
98
+ gr.Number(container=False)
99
+ gr.Textbox(container=False)
100
+
101
+ with gr.Row():
102
+ with gr.Column():
103
+ gr.Dropdown(["a", "b", "c"], interactive=True, container=False, elem_id="here2")
104
+ with gr.Column():
105
+ gr.Number(container=False)
106
+ with gr.Column():
107
+ gr.Textbox(container=False)
108
+
109
+ if __name__ == "__main__":
110
+ demo.launch()
demos/blocks_js_methods/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_js_methods"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "blocks = gr.Blocks()\n", "\n", "with blocks as demo:\n", " subject = gr.Textbox(placeholder=\"subject\")\n", " verb = gr.Radio([\"ate\", \"loved\", \"hated\"])\n", " object = gr.Textbox(placeholder=\"object\")\n", "\n", " with gr.Row():\n", " btn = gr.Button(\"Create sentence.\")\n", " reverse_btn = gr.Button(\"Reverse sentence.\")\n", " foo_bar_btn = gr.Button(\"Append foo\")\n", " reverse_then_to_the_server_btn = gr.Button(\n", " \"Reverse sentence and send to server.\"\n", " )\n", "\n", " def sentence_maker(w1, w2, w3):\n", " return f\"{w1} {w2} {w3}\"\n", "\n", " output1 = gr.Textbox(label=\"output 1\")\n", " output2 = gr.Textbox(label=\"verb\")\n", " output3 = gr.Textbox(label=\"verb reversed\")\n", " output4 = gr.Textbox(label=\"front end process and then send to backend\")\n", "\n", " btn.click(sentence_maker, [subject, verb, object], output1)\n", " reverse_btn.click(\n", " None, [subject, verb, object], output2, js=\"(s, v, o) => o + ' ' + v + ' ' + s\"\n", " )\n", " verb.change(lambda x: x, verb, output3, js=\"(x) => [...x].reverse().join('')\")\n", " foo_bar_btn.click(None, [], subject, js=\"(x) => x + ' foo'\")\n", "\n", " reverse_then_to_the_server_btn.click(\n", " sentence_maker,\n", " [subject, verb, object],\n", " output4,\n", " js=\"(s, v, o) => [s, v, o].map(x => [...x].reverse().join(''))\",\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/blocks_js_methods/run.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ blocks = gr.Blocks()
4
+
5
+ with blocks as demo:
6
+ subject = gr.Textbox(placeholder="subject")
7
+ verb = gr.Radio(["ate", "loved", "hated"])
8
+ object = gr.Textbox(placeholder="object")
9
+
10
+ with gr.Row():
11
+ btn = gr.Button("Create sentence.")
12
+ reverse_btn = gr.Button("Reverse sentence.")
13
+ foo_bar_btn = gr.Button("Append foo")
14
+ reverse_then_to_the_server_btn = gr.Button(
15
+ "Reverse sentence and send to server."
16
+ )
17
+
18
+ def sentence_maker(w1, w2, w3):
19
+ return f"{w1} {w2} {w3}"
20
+
21
+ output1 = gr.Textbox(label="output 1")
22
+ output2 = gr.Textbox(label="verb")
23
+ output3 = gr.Textbox(label="verb reversed")
24
+ output4 = gr.Textbox(label="front end process and then send to backend")
25
+
26
+ btn.click(sentence_maker, [subject, verb, object], output1)
27
+ reverse_btn.click(
28
+ None, [subject, verb, object], output2, js="(s, v, o) => o + ' ' + v + ' ' + s"
29
+ )
30
+ verb.change(lambda x: x, verb, output3, js="(x) => [...x].reverse().join('')")
31
+ foo_bar_btn.click(None, [], subject, js="(x) => x + ' foo'")
32
+
33
+ reverse_then_to_the_server_btn.click(
34
+ sentence_maker,
35
+ [subject, verb, object],
36
+ output4,
37
+ js="(s, v, o) => [s, v, o].map(x => [...x].reverse().join(''))",
38
+ )
39
+
40
+ if __name__ == "__main__":
41
+ demo.launch()
demos/blocks_layout/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_layout"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "demo = gr.Blocks()\n", "\n", "with demo:\n", " with gr.Row():\n", " gr.Image(interactive=True, scale=2)\n", " gr.Image()\n", " with gr.Row():\n", " gr.Textbox(label=\"Text\")\n", " gr.Number(label=\"Count\", scale=2)\n", " gr.Radio(choices=[\"One\", \"Two\"])\n", " with gr.Row():\n", " gr.Button(\"500\", scale=0, min_width=500)\n", " gr.Button(\"A\", scale=0)\n", " gr.Button(\"grow\")\n", " with gr.Row():\n", " gr.Textbox()\n", " gr.Textbox()\n", " gr.Button()\n", " with gr.Row():\n", " with gr.Row():\n", " with gr.Column():\n", " gr.Textbox(label=\"Text\")\n", " gr.Number(label=\"Count\")\n", " gr.Radio(choices=[\"One\", \"Two\"])\n", " gr.Image()\n", " with gr.Column():\n", " gr.Image(interactive=True)\n", " gr.Image()\n", " gr.Image()\n", " gr.Textbox(label=\"Text\")\n", " gr.Number(label=\"Count\")\n", " gr.Radio(choices=[\"One\", \"Two\"])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/blocks_layout/run.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ demo = gr.Blocks()
4
+
5
+ with demo:
6
+ with gr.Row():
7
+ gr.Image(interactive=True, scale=2)
8
+ gr.Image()
9
+ with gr.Row():
10
+ gr.Textbox(label="Text")
11
+ gr.Number(label="Count", scale=2)
12
+ gr.Radio(choices=["One", "Two"])
13
+ with gr.Row():
14
+ gr.Button("500", scale=0, min_width=500)
15
+ gr.Button("A", scale=0)
16
+ gr.Button("grow")
17
+ with gr.Row():
18
+ gr.Textbox()
19
+ gr.Textbox()
20
+ gr.Button()
21
+ with gr.Row():
22
+ with gr.Row():
23
+ with gr.Column():
24
+ gr.Textbox(label="Text")
25
+ gr.Number(label="Count")
26
+ gr.Radio(choices=["One", "Two"])
27
+ gr.Image()
28
+ with gr.Column():
29
+ gr.Image(interactive=True)
30
+ gr.Image()
31
+ gr.Image()
32
+ gr.Textbox(label="Text")
33
+ gr.Number(label="Count")
34
+ gr.Radio(choices=["One", "Two"])
35
+
36
+ if __name__ == "__main__":
37
+ demo.launch()
demos/blocks_multiple_event_triggers/requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ plotly
2
+ pypistats
3
+ python-dateutil
demos/blocks_multiple_event_triggers/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_multiple_event_triggers"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio plotly pypistats python-dateutil "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pypistats\n", "from datetime import date\n", "from dateutil.relativedelta import relativedelta\n", "import pandas as pd\n", "\n", "def get_plot(lib, time):\n", " data = pypistats.overall(lib, total=True, format=\"pandas\")\n", " data = data.groupby(\"category\").get_group(\"with_mirrors\").sort_values(\"date\")\n", " start_date = date.today() - relativedelta(months=int(time.split(\" \")[0]))\n", " data = data[(data['date'] > str(start_date))]\n", " data.date = pd.to_datetime(pd.to_datetime(data.date))\n", " return gr.LinePlot(value=data, x=\"date\", y=\"downloads\",\n", " tooltip=['date', 'downloads'],\n", " title=f\"Pypi downloads of {lib} over last {time}\",\n", " overlay_point=True,\n", " height=400,\n", " width=900)\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\n", " \"\"\"\n", " ## Pypi Download Stats \ud83d\udcc8\n", " See live download stats for all of Hugging Face's open-source libraries \ud83e\udd17\n", " \"\"\")\n", " with gr.Row():\n", " lib = gr.Dropdown([\"transformers\", \"datasets\", \"huggingface-hub\", \"gradio\", \"accelerate\"],\n", " value=\"gradio\", label=\"Library\")\n", " time = gr.Dropdown([\"3 months\", \"6 months\", \"9 months\", \"12 months\"],\n", " value=\"3 months\", label=\"Downloads over the last...\")\n", "\n", " plt = gr.LinePlot()\n", " # You can add multiple event triggers in 2 lines like this\n", " for event in [lib.change, time.change, demo.load]:\n", " event(get_plot, [lib, time], [plt])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/blocks_multiple_event_triggers/run.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pypistats
3
+ from datetime import date
4
+ from dateutil.relativedelta import relativedelta
5
+ import pandas as pd
6
+
7
+ def get_plot(lib, time):
8
+ data = pypistats.overall(lib, total=True, format="pandas")
9
+ data = data.groupby("category").get_group("with_mirrors").sort_values("date")
10
+ start_date = date.today() - relativedelta(months=int(time.split(" ")[0]))
11
+ data = data[(data['date'] > str(start_date))]
12
+ data.date = pd.to_datetime(pd.to_datetime(data.date))
13
+ return gr.LinePlot(value=data, x="date", y="downloads",
14
+ tooltip=['date', 'downloads'],
15
+ title=f"Pypi downloads of {lib} over last {time}",
16
+ overlay_point=True,
17
+ height=400,
18
+ width=900)
19
+
20
+ with gr.Blocks() as demo:
21
+ gr.Markdown(
22
+ """
23
+ ## Pypi Download Stats 📈
24
+ See live download stats for all of Hugging Face's open-source libraries 🤗
25
+ """)
26
+ with gr.Row():
27
+ lib = gr.Dropdown(["transformers", "datasets", "huggingface-hub", "gradio", "accelerate"],
28
+ value="gradio", label="Library")
29
+ time = gr.Dropdown(["3 months", "6 months", "9 months", "12 months"],
30
+ value="3 months", label="Downloads over the last...")
31
+
32
+ plt = gr.LinePlot()
33
+ # You can add multiple event triggers in 2 lines like this
34
+ for event in [lib.change, time.change, demo.load]:
35
+ event(get_plot, [lib, time], [plt])
36
+
37
+ if __name__ == "__main__":
38
+ demo.launch()
demos/blocks_update/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_update"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\n", " \"\"\"\n", " # Animal Generator\n", " Once you select a species, the detail panel should be visible.\n", " \"\"\"\n", " )\n", "\n", " species = gr.Radio(label=\"Animal Class\", choices=[\"Mammal\", \"Fish\", \"Bird\"])\n", " animal = gr.Dropdown(label=\"Animal\", choices=[])\n", "\n", " with gr.Column(visible=False) as details_col:\n", " weight = gr.Slider(0, 20)\n", " details = gr.Textbox(label=\"Extra Details\")\n", " generate_btn = gr.Button(\"Generate\")\n", " output = gr.Textbox(label=\"Output\")\n", "\n", " species_map = {\n", " \"Mammal\": [\"Elephant\", \"Giraffe\", \"Hamster\"],\n", " \"Fish\": [\"Shark\", \"Salmon\", \"Tuna\"],\n", " \"Bird\": [\"Chicken\", \"Eagle\", \"Hawk\"],\n", " }\n", "\n", " def filter_species(species):\n", " return gr.Dropdown(\n", " choices=species_map[species], value=species_map[species][1]\n", " ), gr.Column(visible=True)\n", "\n", " species.change(filter_species, species, [animal, details_col])\n", "\n", " def filter_weight(animal):\n", " if animal in (\"Elephant\", \"Shark\", \"Giraffe\"):\n", " return gr.Slider(maximum=100)\n", " else:\n", " return gr.Slider(maximum=20)\n", "\n", " animal.change(filter_weight, animal, weight)\n", " weight.change(lambda w: gr.Textbox(lines=int(w / 10) + 1), weight, details)\n", "\n", " generate_btn.click(lambda x: x, details, output)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/blocks_update/run.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ with gr.Blocks() as demo:
4
+ gr.Markdown(
5
+ """
6
+ # Animal Generator
7
+ Once you select a species, the detail panel should be visible.
8
+ """
9
+ )
10
+
11
+ species = gr.Radio(label="Animal Class", choices=["Mammal", "Fish", "Bird"])
12
+ animal = gr.Dropdown(label="Animal", choices=[])
13
+
14
+ with gr.Column(visible=False) as details_col:
15
+ weight = gr.Slider(0, 20)
16
+ details = gr.Textbox(label="Extra Details")
17
+ generate_btn = gr.Button("Generate")
18
+ output = gr.Textbox(label="Output")
19
+
20
+ species_map = {
21
+ "Mammal": ["Elephant", "Giraffe", "Hamster"],
22
+ "Fish": ["Shark", "Salmon", "Tuna"],
23
+ "Bird": ["Chicken", "Eagle", "Hawk"],
24
+ }
25
+
26
+ def filter_species(species):
27
+ return gr.Dropdown(
28
+ choices=species_map[species], value=species_map[species][1]
29
+ ), gr.Column(visible=True)
30
+
31
+ species.change(filter_species, species, [animal, details_col])
32
+
33
+ def filter_weight(animal):
34
+ if animal in ("Elephant", "Shark", "Giraffe"):
35
+ return gr.Slider(maximum=100)
36
+ else:
37
+ return gr.Slider(maximum=20)
38
+
39
+ animal.change(filter_weight, animal, weight)
40
+ weight.change(lambda w: gr.Textbox(lines=int(w / 10) + 1), weight, details)
41
+
42
+ generate_btn.click(lambda x: x, details, output)
43
+
44
+ if __name__ == "__main__":
45
+ demo.launch()
demos/calculator/examples/log.csv ADDED
File without changes
demos/calculator/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: calculator"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('examples')\n", "!wget -q -O examples/log.csv https://github.com/gradio-app/gradio/raw/main/demo/calculator/examples/log.csv"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "def calculator(num1, operation, num2):\n", " if operation == \"add\":\n", " return num1 + num2\n", " elif operation == \"subtract\":\n", " return num1 - num2\n", " elif operation == \"multiply\":\n", " return num1 * num2\n", " elif operation == \"divide\":\n", " if num2 == 0:\n", " raise gr.Error(\"Cannot divide by zero!\")\n", " return num1 / num2\n", "\n", "demo = gr.Interface(\n", " calculator,\n", " [\n", " \"number\",\n", " gr.Radio([\"add\", \"subtract\", \"multiply\", \"divide\"]),\n", " \"number\"\n", " ],\n", " \"number\",\n", " examples=[\n", " [45, \"add\", 3],\n", " [3.14, \"divide\", 2],\n", " [144, \"multiply\", 2.5],\n", " [0, \"subtract\", 1.2],\n", " ],\n", " title=\"Toy Calculator\",\n", " description=\"Here's a sample toy calculator.\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/calculator/run.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def calculator(num1, operation, num2):
4
+ if operation == "add":
5
+ return num1 + num2
6
+ elif operation == "subtract":
7
+ return num1 - num2
8
+ elif operation == "multiply":
9
+ return num1 * num2
10
+ elif operation == "divide":
11
+ if num2 == 0:
12
+ raise gr.Error("Cannot divide by zero!")
13
+ return num1 / num2
14
+
15
+ demo = gr.Interface(
16
+ calculator,
17
+ [
18
+ "number",
19
+ gr.Radio(["add", "subtract", "multiply", "divide"]),
20
+ "number"
21
+ ],
22
+ "number",
23
+ examples=[
24
+ [45, "add", 3],
25
+ [3.14, "divide", 2],
26
+ [144, "multiply", 2.5],
27
+ [0, "subtract", 1.2],
28
+ ],
29
+ title="Toy Calculator",
30
+ description="Here's a sample toy calculator.",
31
+ )
32
+
33
+ if __name__ == "__main__":
34
+ demo.launch()
demos/calculator/screenshot.gif ADDED

Git LFS Details

  • SHA256: 3698fb03b6507ff954de47559f6830dfff88aa66487d2029a9bcf1c2f3762e08
  • Pointer size: 132 Bytes
  • Size of remote file: 5.72 MB
demos/cancel_events/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "import atexit\n", "import pathlib\n", "\n", "log_file = pathlib.Path(__file__).parent / \"cancel_events_output_log.txt\"\n", "\n", "def fake_diffusion(steps):\n", " log_file.write_text(\"\")\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " with log_file.open(\"a\") as f:\n", " f.write(f\"Current step: {i}\\n\")\n", " time.sleep(0.2)\n", " yield str(i)\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(10)\n", " return 42\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(\n", " label=\"Cancel Iteration and Expensive Calculation on Change\"\n", " )\n", " cancel_on_submit = gr.Textbox(\n", " label=\"Cancel Iteration and Expensive Calculation on Submit\"\n", " )\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(\n", " sources=[\"webcam\"], label=\"Cancel on clear\", interactive=True\n", " )\n", " with gr.Column():\n", " video = gr.Video(\n", " sources=[\"webcam\"], label=\"Cancel on start recording\", interactive=True\n", " )\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(\n", " fn=long_prediction, inputs=[textbox], outputs=prediction\n", " )\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(\n", " lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event]\n", " )\n", " image.clear(None, None, None, cancels=[click_event, pred_event])\n", " video.start_recording(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(max_size=20)\n", " atexit.register(lambda: log_file.unlink())\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/cancel_events/run.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import gradio as gr
3
+ import atexit
4
+ import pathlib
5
+
6
+ log_file = pathlib.Path(__file__).parent / "cancel_events_output_log.txt"
7
+
8
+ def fake_diffusion(steps):
9
+ log_file.write_text("")
10
+ for i in range(steps):
11
+ print(f"Current step: {i}")
12
+ with log_file.open("a") as f:
13
+ f.write(f"Current step: {i}\n")
14
+ time.sleep(0.2)
15
+ yield str(i)
16
+
17
+ def long_prediction(*args, **kwargs):
18
+ time.sleep(10)
19
+ return 42
20
+
21
+ with gr.Blocks() as demo:
22
+ with gr.Row():
23
+ with gr.Column():
24
+ n = gr.Slider(1, 10, value=9, step=1, label="Number Steps")
25
+ run = gr.Button(value="Start Iterating")
26
+ output = gr.Textbox(label="Iterative Output")
27
+ stop = gr.Button(value="Stop Iterating")
28
+ with gr.Column():
29
+ textbox = gr.Textbox(label="Prompt")
30
+ prediction = gr.Number(label="Expensive Calculation")
31
+ run_pred = gr.Button(value="Run Expensive Calculation")
32
+ with gr.Column():
33
+ cancel_on_change = gr.Textbox(
34
+ label="Cancel Iteration and Expensive Calculation on Change"
35
+ )
36
+ cancel_on_submit = gr.Textbox(
37
+ label="Cancel Iteration and Expensive Calculation on Submit"
38
+ )
39
+ echo = gr.Textbox(label="Echo")
40
+ with gr.Row():
41
+ with gr.Column():
42
+ image = gr.Image(
43
+ sources=["webcam"], label="Cancel on clear", interactive=True
44
+ )
45
+ with gr.Column():
46
+ video = gr.Video(
47
+ sources=["webcam"], label="Cancel on start recording", interactive=True
48
+ )
49
+
50
+ click_event = run.click(fake_diffusion, n, output)
51
+ stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
52
+ pred_event = run_pred.click(
53
+ fn=long_prediction, inputs=[textbox], outputs=prediction
54
+ )
55
+
56
+ cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])
57
+ cancel_on_submit.submit(
58
+ lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event]
59
+ )
60
+ image.clear(None, None, None, cancels=[click_event, pred_event])
61
+ video.start_recording(None, None, None, cancels=[click_event, pred_event])
62
+
63
+ demo.queue(max_size=20)
64
+ atexit.register(lambda: log_file.unlink())
65
+
66
+ if __name__ == "__main__":
67
+ demo.launch()
demos/chatbot_multimodal/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: chatbot_multimodal"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/chatbot_multimodal/tuples_testcase.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import time\n", "\n", "# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.\n", "\n", "\n", "def print_like_dislike(x: gr.LikeData):\n", " print(x.index, x.value, x.liked)\n", "\n", "\n", "def add_message(history, message):\n", " for x in message[\"files\"]:\n", " history.append({\"role\": \"user\", \"content\": {\"path\": x}})\n", " if message[\"text\"] is not None:\n", " history.append({\"role\": \"user\", \"content\": message[\"text\"]})\n", " return history, gr.MultimodalTextbox(value=None, interactive=False)\n", "\n", "\n", "def bot(history: list):\n", " response = \"**That's cool!**\"\n", " history.append({\"role\": \"assistant\", \"content\": \"\"})\n", " for character in response:\n", " history[-1][\"content\"] += character\n", " time.sleep(0.05)\n", " yield history\n", "\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot(elem_id=\"chatbot\", bubble_full_width=False, type=\"messages\")\n", "\n", " chat_input = gr.MultimodalTextbox(\n", " interactive=True,\n", " file_count=\"multiple\",\n", " placeholder=\"Enter message or upload file...\",\n", " show_label=False,\n", " sources=[\"microphone\", \"upload\"],\n", " )\n", "\n", " chat_msg = chat_input.submit(\n", " add_message, [chatbot, chat_input], [chatbot, chat_input]\n", " )\n", " bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name=\"bot_response\")\n", " bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])\n", "\n", " chatbot.like(print_like_dislike, None, None, like_user_message=True)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/chatbot_multimodal/run.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import time
3
+
4
+ # Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
5
+
6
+
7
+ def print_like_dislike(x: gr.LikeData):
8
+ print(x.index, x.value, x.liked)
9
+
10
+
11
+ def add_message(history, message):
12
+ for x in message["files"]:
13
+ history.append({"role": "user", "content": {"path": x}})
14
+ if message["text"] is not None:
15
+ history.append({"role": "user", "content": message["text"]})
16
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
17
+
18
+
19
+ def bot(history: list):
20
+ response = "**That's cool!**"
21
+ history.append({"role": "assistant", "content": ""})
22
+ for character in response:
23
+ history[-1]["content"] += character
24
+ time.sleep(0.05)
25
+ yield history
26
+
27
+
28
+ with gr.Blocks() as demo:
29
+ chatbot = gr.Chatbot(elem_id="chatbot", bubble_full_width=False, type="messages")
30
+
31
+ chat_input = gr.MultimodalTextbox(
32
+ interactive=True,
33
+ file_count="multiple",
34
+ placeholder="Enter message or upload file...",
35
+ show_label=False,
36
+ sources=["microphone", "upload"],
37
+ )
38
+
39
+ chat_msg = chat_input.submit(
40
+ add_message, [chatbot, chat_input], [chatbot, chat_input]
41
+ )
42
+ bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
43
+ bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
44
+
45
+ chatbot.like(print_like_dislike, None, None, like_user_message=True)
46
+
47
+ if __name__ == "__main__":
48
+ demo.launch()
demos/chatbot_multimodal/tuples_testcase.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import plotly.express as px
3
+
4
+ # Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
5
+
6
+ def random_plot():
7
+ df = px.data.iris()
8
+ fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species",
9
+ size='petal_length', hover_data=['petal_width'])
10
+ return fig
11
+
12
+ def print_like_dislike(x: gr.LikeData):
13
+ print(x.index, x.value, x.liked)
14
+
15
+ def add_message(history, message):
16
+ for x in message["files"]:
17
+ history.append(((x,), None))
18
+ if message["text"] is not None:
19
+ history.append((message["text"], None))
20
+ return history, gr.MultimodalTextbox(value=None, interactive=False)
21
+
22
+ def bot(history):
23
+ history[-1][1] = "Cool!"
24
+ return history
25
+
26
+ fig = random_plot()
27
+
28
+ with gr.Blocks(fill_height=True) as demo:
29
+ chatbot = gr.Chatbot(
30
+ elem_id="chatbot",
31
+ bubble_full_width=False,
32
+ scale=1,
33
+ )
34
+
35
+ chat_input = gr.MultimodalTextbox(interactive=True,
36
+ file_count="multiple",
37
+ placeholder="Enter message or upload file...", show_label=False)
38
+
39
+ chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
40
+ bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
41
+ bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
42
+
43
+ chatbot.like(print_like_dislike, None, None)
44
+
45
+ if __name__ == "__main__":
46
+ demo.launch()
demos/chatinterface_streaming_echo/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: chatinterface_streaming_echo"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "\n", "def slow_echo(message, history):\n", " for i in range(len(message)):\n", " time.sleep(0.05)\n", " yield \"You typed: \" + message[: i + 1]\n", "\n", "demo = gr.ChatInterface(\n", " slow_echo,\n", " type=\"messages\",\n", " flagging_mode=\"manual\",\n", " flagging_options=[\"Like\", \"Spam\", \"Inappropriate\", \"Other\"],\n", " save_history=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/chatinterface_streaming_echo/run.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import gradio as gr
3
+
4
+ def slow_echo(message, history):
5
+ for i in range(len(message)):
6
+ time.sleep(0.05)
7
+ yield "You typed: " + message[: i + 1]
8
+
9
+ demo = gr.ChatInterface(
10
+ slow_echo,
11
+ type="messages",
12
+ flagging_mode="manual",
13
+ flagging_options=["Like", "Spam", "Inappropriate", "Other"],
14
+ save_history=True,
15
+ )
16
+
17
+ if __name__ == "__main__":
18
+ demo.launch()
demos/clear_components/__init__.py ADDED
File without changes
demos/clear_components/requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ numpy
2
+ pandas
3
+ matplotlib
demos/clear_components/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: clear_components"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy pandas matplotlib "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/clear_components/__init__.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from datetime import datetime\n", "import os\n", "import random\n", "import string\n", "import pandas as pd\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "def random_plot():\n", " start_year = 2020\n", " x = np.arange(start_year, start_year + 5)\n", " year_count = x.shape[0]\n", " plt_format = \"-\"\n", " fig = plt.figure()\n", " ax = fig.add_subplot(111)\n", " series = np.arange(0, year_count, dtype=float)\n", " series = series**2\n", " series += np.random.rand(year_count)\n", " ax.plot(x, series, plt_format)\n", " return fig\n", "\n", "images = [\n", " \"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80\",\n", " \"https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80\",\n", " \"https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80\",\n", "]\n", "file_dir = os.path.join(os.path.abspath(''), \"..\", \"kitchen_sink\", \"files\")\n", "model3d_dir = os.path.join(os.path.abspath(''), \"..\", \"model3D\", \"files\")\n", "highlighted_text_output_1 = [\n", " {\n", " \"entity\": \"I-LOC\",\n", " \"score\": 0.9988978,\n", " \"index\": 2,\n", " \"word\": \"Chicago\",\n", " \"start\": 5,\n", " \"end\": 12,\n", " },\n", " {\n", " \"entity\": \"I-MISC\",\n", " \"score\": 0.9958592,\n", " \"index\": 5,\n", " \"word\": \"Pakistani\",\n", " \"start\": 22,\n", " \"end\": 31,\n", " },\n", "]\n", "highlighted_text_output_2 = [\n", " {\n", " \"entity\": \"I-LOC\",\n", " \"score\": 0.9988978,\n", " \"index\": 2,\n", " \"word\": \"Chicago\",\n", " \"start\": 5,\n", " \"end\": 12,\n", " },\n", " {\n", " \"entity\": \"I-LOC\",\n", " \"score\": 0.9958592,\n", " \"index\": 5,\n", " \"word\": \"Pakistan\",\n", " \"start\": 22,\n", " \"end\": 30,\n", " },\n", "]\n", "\n", "highlighted_text = \"Does Chicago have any Pakistani restaurants\"\n", "\n", "def random_model3d():\n", " model_3d = random.choice(\n", " [os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != \"source.txt\"]\n", " )\n", " return model_3d\n", "\n", "components = [\n", " gr.Textbox(value=lambda: datetime.now(), label=\"Current Time\"),\n", " gr.Number(value=lambda: random.random(), label=\"Random Percentage\"),\n", " gr.Slider(minimum=0, maximum=100, randomize=True, label=\"Slider with randomize\"),\n", " gr.Slider(\n", " minimum=0,\n", " maximum=1,\n", " value=lambda: random.random(),\n", " label=\"Slider with value func\",\n", " ),\n", " gr.Checkbox(value=lambda: random.random() > 0.5, label=\"Random Checkbox\"),\n", " gr.CheckboxGroup(\n", " choices=[\"a\", \"b\", \"c\", \"d\"],\n", " value=lambda: random.choice([\"a\", \"b\", \"c\", \"d\"]),\n", " label=\"Random CheckboxGroup\",\n", " ),\n", " gr.Radio(\n", " choices=list(string.ascii_lowercase),\n", " value=lambda: random.choice(string.ascii_lowercase),\n", " ),\n", " gr.Dropdown(\n", " choices=[\"a\", \"b\", \"c\", \"d\", \"e\"],\n", " value=lambda: random.choice([\"a\", \"b\", \"c\"]),\n", " ),\n", " gr.Image(\n", " value=lambda: random.choice(images)\n", " ),\n", " gr.Video(value=lambda: os.path.join(file_dir, \"world.mp4\")),\n", " gr.Audio(value=lambda: os.path.join(file_dir, \"cantina.wav\")),\n", " gr.File(\n", " value=lambda: random.choice(\n", " [os.path.join(file_dir, img) for img in os.listdir(file_dir)]\n", " )\n", " ),\n", " gr.Dataframe(\n", " value=lambda: pd.DataFrame({\"random_number_rows\": range(5)}, columns=[\"one\", \"two\", \"three\"]) # type: ignore\n", " ),\n", " gr.ColorPicker(value=lambda: random.choice([\"#000000\", \"#ff0000\", \"#0000FF\"])),\n", " gr.Label(value=lambda: random.choice([\"Pedestrian\", \"Car\", \"Cyclist\"])),\n", " gr.HighlightedText(\n", " value=lambda: random.choice(\n", " [\n", " {\"text\": highlighted_text, \"entities\": highlighted_text_output_1},\n", " {\"text\": highlighted_text, \"entities\": highlighted_text_output_2},\n", " ]\n", " ),\n", " ),\n", " gr.JSON(value=lambda: random.choice([{\"a\": 1}, {\"b\": 2}])),\n", " gr.HTML(\n", " value=lambda: random.choice(\n", " [\n", " '<p style=\"color:red;\">I am red</p>',\n", " '<p style=\"color:blue;\">I am blue</p>',\n", " ]\n", " )\n", " ),\n", " gr.Gallery(\n", " value=lambda: images\n", " ),\n", " gr.Model3D(value=random_model3d),\n", " gr.Plot(value=random_plot),\n", " gr.Markdown(value=lambda: f\"### {random.choice(['Hello', 'Hi', 'Goodbye!'])}\"),\n", "]\n", "\n", "def evaluate_values(*args):\n", " are_false = []\n", " for a in args:\n", " if isinstance(a, (pd.DataFrame, np.ndarray)):\n", " are_false.append(not a.any().any()) # type: ignore\n", " elif isinstance(a, str) and a.startswith(\"#\"):\n", " are_false.append(a == \"#000000\")\n", " else:\n", " are_false.append(not a)\n", " return all(are_false)\n", "\n", "with gr.Blocks() as demo:\n", " for i, component in enumerate(components):\n", " component.label = f\"component_{str(i).zfill(2)}\"\n", " component.render()\n", " clear = gr.ClearButton(value=\"Clear\", components=components)\n", " result = gr.Textbox(label=\"Are all cleared?\")\n", " hide = gr.Button(value=\"Hide\")\n", " reveal = gr.Button(value=\"Reveal\")\n", " clear_button_and_components = components + [clear]\n", " hide.click(\n", " lambda: [c.__class__(visible=False) for c in clear_button_and_components],\n", " inputs=[],\n", " outputs=clear_button_and_components\n", " )\n", " reveal.click(\n", " lambda: [c.__class__(visible=True) for c in clear_button_and_components],\n", " inputs=[],\n", " outputs=clear_button_and_components\n", " )\n", " get_value = gr.Button(value=\"Get Values\")\n", " get_value.click(evaluate_values, components, result)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/clear_components/run.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from datetime import datetime
3
+ import os
4
+ import random
5
+ import string
6
+ import pandas as pd
7
+
8
+ import numpy as np
9
+ import matplotlib.pyplot as plt
10
+
11
+ def random_plot():
12
+ start_year = 2020
13
+ x = np.arange(start_year, start_year + 5)
14
+ year_count = x.shape[0]
15
+ plt_format = "-"
16
+ fig = plt.figure()
17
+ ax = fig.add_subplot(111)
18
+ series = np.arange(0, year_count, dtype=float)
19
+ series = series**2
20
+ series += np.random.rand(year_count)
21
+ ax.plot(x, series, plt_format)
22
+ return fig
23
+
24
+ images = [
25
+ "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
26
+ "https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
27
+ "https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
28
+ ]
29
+ file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files")
30
+ model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files")
31
+ highlighted_text_output_1 = [
32
+ {
33
+ "entity": "I-LOC",
34
+ "score": 0.9988978,
35
+ "index": 2,
36
+ "word": "Chicago",
37
+ "start": 5,
38
+ "end": 12,
39
+ },
40
+ {
41
+ "entity": "I-MISC",
42
+ "score": 0.9958592,
43
+ "index": 5,
44
+ "word": "Pakistani",
45
+ "start": 22,
46
+ "end": 31,
47
+ },
48
+ ]
49
+ highlighted_text_output_2 = [
50
+ {
51
+ "entity": "I-LOC",
52
+ "score": 0.9988978,
53
+ "index": 2,
54
+ "word": "Chicago",
55
+ "start": 5,
56
+ "end": 12,
57
+ },
58
+ {
59
+ "entity": "I-LOC",
60
+ "score": 0.9958592,
61
+ "index": 5,
62
+ "word": "Pakistan",
63
+ "start": 22,
64
+ "end": 30,
65
+ },
66
+ ]
67
+
68
+ highlighted_text = "Does Chicago have any Pakistani restaurants"
69
+
70
+ def random_model3d():
71
+ model_3d = random.choice(
72
+ [os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"]
73
+ )
74
+ return model_3d
75
+
76
+ components = [
77
+ gr.Textbox(value=lambda: datetime.now(), label="Current Time"),
78
+ gr.Number(value=lambda: random.random(), label="Random Percentage"),
79
+ gr.Slider(minimum=0, maximum=100, randomize=True, label="Slider with randomize"),
80
+ gr.Slider(
81
+ minimum=0,
82
+ maximum=1,
83
+ value=lambda: random.random(),
84
+ label="Slider with value func",
85
+ ),
86
+ gr.Checkbox(value=lambda: random.random() > 0.5, label="Random Checkbox"),
87
+ gr.CheckboxGroup(
88
+ choices=["a", "b", "c", "d"],
89
+ value=lambda: random.choice(["a", "b", "c", "d"]),
90
+ label="Random CheckboxGroup",
91
+ ),
92
+ gr.Radio(
93
+ choices=list(string.ascii_lowercase),
94
+ value=lambda: random.choice(string.ascii_lowercase),
95
+ ),
96
+ gr.Dropdown(
97
+ choices=["a", "b", "c", "d", "e"],
98
+ value=lambda: random.choice(["a", "b", "c"]),
99
+ ),
100
+ gr.Image(
101
+ value=lambda: random.choice(images)
102
+ ),
103
+ gr.Video(value=lambda: os.path.join(file_dir, "world.mp4")),
104
+ gr.Audio(value=lambda: os.path.join(file_dir, "cantina.wav")),
105
+ gr.File(
106
+ value=lambda: random.choice(
107
+ [os.path.join(file_dir, img) for img in os.listdir(file_dir)]
108
+ )
109
+ ),
110
+ gr.Dataframe(
111
+ value=lambda: pd.DataFrame({"random_number_rows": range(5)}, columns=["one", "two", "three"]) # type: ignore
112
+ ),
113
+ gr.ColorPicker(value=lambda: random.choice(["#000000", "#ff0000", "#0000FF"])),
114
+ gr.Label(value=lambda: random.choice(["Pedestrian", "Car", "Cyclist"])),
115
+ gr.HighlightedText(
116
+ value=lambda: random.choice(
117
+ [
118
+ {"text": highlighted_text, "entities": highlighted_text_output_1},
119
+ {"text": highlighted_text, "entities": highlighted_text_output_2},
120
+ ]
121
+ ),
122
+ ),
123
+ gr.JSON(value=lambda: random.choice([{"a": 1}, {"b": 2}])),
124
+ gr.HTML(
125
+ value=lambda: random.choice(
126
+ [
127
+ '<p style="color:red;">I am red</p>',
128
+ '<p style="color:blue;">I am blue</p>',
129
+ ]
130
+ )
131
+ ),
132
+ gr.Gallery(
133
+ value=lambda: images
134
+ ),
135
+ gr.Model3D(value=random_model3d),
136
+ gr.Plot(value=random_plot),
137
+ gr.Markdown(value=lambda: f"### {random.choice(['Hello', 'Hi', 'Goodbye!'])}"),
138
+ ]
139
+
140
+ def evaluate_values(*args):
141
+ are_false = []
142
+ for a in args:
143
+ if isinstance(a, (pd.DataFrame, np.ndarray)):
144
+ are_false.append(not a.any().any()) # type: ignore
145
+ elif isinstance(a, str) and a.startswith("#"):
146
+ are_false.append(a == "#000000")
147
+ else:
148
+ are_false.append(not a)
149
+ return all(are_false)
150
+
151
+ with gr.Blocks() as demo:
152
+ for i, component in enumerate(components):
153
+ component.label = f"component_{str(i).zfill(2)}"
154
+ component.render()
155
+ clear = gr.ClearButton(value="Clear", components=components)
156
+ result = gr.Textbox(label="Are all cleared?")
157
+ hide = gr.Button(value="Hide")
158
+ reveal = gr.Button(value="Reveal")
159
+ clear_button_and_components = components + [clear]
160
+ hide.click(
161
+ lambda: [c.__class__(visible=False) for c in clear_button_and_components],
162
+ inputs=[],
163
+ outputs=clear_button_and_components
164
+ )
165
+ reveal.click(
166
+ lambda: [c.__class__(visible=True) for c in clear_button_and_components],
167
+ inputs=[],
168
+ outputs=clear_button_and_components
169
+ )
170
+ get_value = gr.Button(value="Get Values")
171
+ get_value.click(evaluate_values, components, result)
172
+
173
+ if __name__ == "__main__":
174
+ demo.launch()
demos/code/file.css ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .class {
2
+ color: blue;
3
+ }
4
+
5
+ #id {
6
+ color: pink;
7
+ }
8
+
9
+ div {
10
+ color: purple;
11
+ }
demos/code/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: code"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/code/file.css"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import os\n", "from time import sleep\n", "\n", "css_file = os.path.join(os.path.abspath(''), \"file.css\")\n", "\n", "def set_lang(language):\n", " print(language)\n", " return gr.Code(language=language)\n", "\n", "def set_lang_from_path():\n", " sleep(1)\n", " return gr.Code(open(css_file).read(), language=\"css\")\n", "\n", "def code(language, code):\n", " return gr.Code(code, language=language)\n", "\n", "io = gr.Interface(lambda x: x, \"code\", \"code\")\n", "\n", "with gr.Blocks() as demo:\n", " lang = gr.Dropdown(value=\"python\", choices=gr.Code.languages)\n", " with gr.Row():\n", " code_in = gr.Code(\n", " language=\"python\",\n", " label=\"Input\",\n", " value='def all_odd_elements(sequence):\\n \"\"\"Returns every odd element of the sequence.\"\"\"',\n", " )\n", " code_out = gr.Code(label=\"Output\")\n", " btn = gr.Button(\"Run\")\n", " btn_two = gr.Button(\"Load File\")\n", "\n", " lang.change(set_lang, inputs=lang, outputs=code_in)\n", " btn.click(code, inputs=[lang, code_in], outputs=code_out)\n", " btn_two.click(set_lang_from_path, inputs=None, outputs=code_out)\n", " io.render()\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/code/run.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from time import sleep
4
+
5
+ css_file = os.path.join(os.path.dirname(__file__), "file.css")
6
+
7
+ def set_lang(language):
8
+ print(language)
9
+ return gr.Code(language=language)
10
+
11
+ def set_lang_from_path():
12
+ sleep(1)
13
+ return gr.Code(open(css_file).read(), language="css")
14
+
15
+ def code(language, code):
16
+ return gr.Code(code, language=language)
17
+
18
+ io = gr.Interface(lambda x: x, "code", "code")
19
+
20
+ with gr.Blocks() as demo:
21
+ lang = gr.Dropdown(value="python", choices=gr.Code.languages)
22
+ with gr.Row():
23
+ code_in = gr.Code(
24
+ language="python",
25
+ label="Input",
26
+ value='def all_odd_elements(sequence):\n """Returns every odd element of the sequence."""',
27
+ )
28
+ code_out = gr.Code(label="Output")
29
+ btn = gr.Button("Run")
30
+ btn_two = gr.Button("Load File")
31
+
32
+ lang.change(set_lang, inputs=lang, outputs=code_in)
33
+ btn.click(code, inputs=[lang, code_in], outputs=code_out)
34
+ btn_two.click(set_lang_from_path, inputs=None, outputs=code_out)
35
+ io.render()
36
+
37
+ if __name__ == "__main__":
38
+ demo.launch()
demos/fake_diffusion_with_gif/requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ numpy
2
+ requests
3
+ Pillow
demos/fake_diffusion_with_gif/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fake_diffusion_with_gif"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy requests Pillow "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import time\n", "import os\n", "from PIL import Image\n", "import requests\n", "from io import BytesIO\n", "\n", "def create_gif(images):\n", " pil_images = []\n", " for image in images:\n", " if isinstance(image, str):\n", " response = requests.get(image)\n", " image = Image.open(BytesIO(response.content))\n", " else:\n", " image = Image.fromarray((image * 255).astype(np.uint8))\n", " pil_images.append(image)\n", " fp_out = os.path.join(os.path.abspath(''), \"image.gif\")\n", " img = pil_images.pop(0)\n", " img.save(fp=fp_out, format='GIF', append_images=pil_images,\n", " save_all=True, duration=400, loop=0)\n", " return fp_out\n", "\n", "def fake_diffusion(steps):\n", " rng = np.random.default_rng()\n", " images = []\n", " for _ in range(steps):\n", " time.sleep(1)\n", " image = rng.random((600, 600, 3))\n", " images.append(image)\n", " yield image, gr.Image(visible=False)\n", "\n", " time.sleep(1)\n", " image = \"https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg\"\n", " images.append(image)\n", " gif_path = create_gif(images)\n", "\n", " yield image, gr.Image(value=gif_path, visible=True)\n", "\n", "demo = gr.Interface(fake_diffusion,\n", " inputs=gr.Slider(1, 10, 3, step=1),\n", " outputs=[\"image\", gr.Image(label=\"All Images\", visible=False)])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/fake_diffusion_with_gif/run.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import time
4
+ import os
5
+ from PIL import Image
6
+ import requests
7
+ from io import BytesIO
8
+
9
+ def create_gif(images):
10
+ pil_images = []
11
+ for image in images:
12
+ if isinstance(image, str):
13
+ response = requests.get(image)
14
+ image = Image.open(BytesIO(response.content))
15
+ else:
16
+ image = Image.fromarray((image * 255).astype(np.uint8))
17
+ pil_images.append(image)
18
+ fp_out = os.path.join(os.path.dirname(__file__), "image.gif")
19
+ img = pil_images.pop(0)
20
+ img.save(fp=fp_out, format='GIF', append_images=pil_images,
21
+ save_all=True, duration=400, loop=0)
22
+ return fp_out
23
+
24
+ def fake_diffusion(steps):
25
+ rng = np.random.default_rng()
26
+ images = []
27
+ for _ in range(steps):
28
+ time.sleep(1)
29
+ image = rng.random((600, 600, 3))
30
+ images.append(image)
31
+ yield image, gr.Image(visible=False)
32
+
33
+ time.sleep(1)
34
+ image = "https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg"
35
+ images.append(image)
36
+ gif_path = create_gif(images)
37
+
38
+ yield image, gr.Image(value=gif_path, visible=True)
39
+
40
+ demo = gr.Interface(fake_diffusion,
41
+ inputs=gr.Slider(1, 10, 3, step=1),
42
+ outputs=["image", gr.Image(label="All Images", visible=False)])
43
+
44
+ if __name__ == "__main__":
45
+ demo.launch()
demos/fake_gan/DESCRIPTION.md ADDED
@@ -0,0 +1 @@
 
 
1
+ This is a fake GAN that shows how to create a text-to-image interface for image generation. Check out the Stable Diffusion demo for more: https://hf.co/spaces/stabilityai/stable-diffusion/
demos/fake_gan/run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fake_gan\n", "### This is a fake GAN that shows how to create a text-to-image interface for image generation. Check out the Stable Diffusion demo for more: https://hf.co/spaces/stabilityai/stable-diffusion/\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# This demo needs to be run from the repo folder.\n", "# python demo/fake_gan/run.py\n", "import random\n", "\n", "import gradio as gr\n", "\n", "def fake_gan():\n", " images = [\n", " (random.choice(\n", " [\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-1151ce9f4b2043de0d2e3b7826127998.jpg\",\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-116b5e92936b766b7fdfc242649337f7.jpg\",\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-1163530ca19b5cebe1b002b8ec67b6fc.jpg\",\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-1116395d6e6a6581eef8b8038f4c8e55.jpg\",\n", " \"http://www.marketingtool.online/en/face-generator/img/faces/avatar-11319be65db395d0e8e6855d18ddcef0.jpg\",\n", " ]\n", " ), f\"label {i}\")\n", " for i in range(3)\n", " ]\n", " return images\n", "\n", "with gr.Blocks() as demo:\n", " gallery = gr.Gallery(\n", " label=\"Generated images\", show_label=False, elem_id=\"gallery\"\n", " , columns=[3], rows=[1], object_fit=\"contain\", height=\"auto\")\n", " btn = gr.Button(\"Generate images\", scale=0)\n", "\n", " btn.click(fake_gan, None, gallery)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/fake_gan/run.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This demo needs to be run from the repo folder.
2
+ # python demo/fake_gan/run.py
3
+ import random
4
+
5
+ import gradio as gr
6
+
7
+ def fake_gan():
8
+ images = [
9
+ (random.choice(
10
+ [
11
+ "http://www.marketingtool.online/en/face-generator/img/faces/avatar-1151ce9f4b2043de0d2e3b7826127998.jpg",
12
+ "http://www.marketingtool.online/en/face-generator/img/faces/avatar-116b5e92936b766b7fdfc242649337f7.jpg",
13
+ "http://www.marketingtool.online/en/face-generator/img/faces/avatar-1163530ca19b5cebe1b002b8ec67b6fc.jpg",
14
+ "http://www.marketingtool.online/en/face-generator/img/faces/avatar-1116395d6e6a6581eef8b8038f4c8e55.jpg",
15
+ "http://www.marketingtool.online/en/face-generator/img/faces/avatar-11319be65db395d0e8e6855d18ddcef0.jpg",
16
+ ]
17
+ ), f"label {i}")
18
+ for i in range(3)
19
+ ]
20
+ return images
21
+
22
+ with gr.Blocks() as demo:
23
+ gallery = gr.Gallery(
24
+ label="Generated images", show_label=False, elem_id="gallery"
25
+ , columns=[3], rows=[1], object_fit="contain", height="auto")
26
+ btn = gr.Button("Generate images", scale=0)
27
+
28
+ btn.click(fake_gan, None, gallery)
29
+
30
+ if __name__ == "__main__":
31
+ demo.launch()
demos/file_explorer_component_events/dir1/bar.txt ADDED
File without changes
demos/file_explorer_component_events/dir1/foo.txt ADDED
File without changes
demos/file_explorer_component_events/dir2/baz.png ADDED
demos/file_explorer_component_events/dir2/foo.png ADDED
demos/file_explorer_component_events/dir3/dir3_bar.log ADDED
File without changes
demos/file_explorer_component_events/dir3/dir3_foo.txt ADDED
File without changes
demos/file_explorer_component_events/dir3/dir4/dir5/dir5_foo.txt ADDED
File without changes
demos/file_explorer_component_events/dir3/dir4/dir7/dir7_foo.txt ADDED
File without changes