Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,76 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
@app.get("/")
|
6 |
-
def
|
7 |
-
return {"
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import subprocess
|
4 |
+
|
5 |
+
from fastapi import FastAPI, UploadFile, File
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
import torchaudio
|
8 |
+
import torch
|
9 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
10 |
+
|
11 |
+
# Use writable cache paths
|
12 |
+
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
|
13 |
+
os.environ['HF_HOME'] = '/app/cache'
|
14 |
+
os.environ['TORCH_HOME'] = '/app/cache'
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
18 |
+
# CORS config
|
19 |
+
app.add_middleware(
|
20 |
+
CORSMiddleware,
|
21 |
+
allow_origins=["http://localhost:8080"],
|
22 |
+
allow_credentials=True,
|
23 |
+
allow_methods=["*"],
|
24 |
+
allow_headers=["*"],
|
25 |
+
)
|
26 |
+
|
27 |
+
# Load model + processor
|
28 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
29 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
30 |
+
|
31 |
+
def convert_webm_to_wav(webm_bytes: bytes) -> io.BytesIO:
|
32 |
+
process = subprocess.run(
|
33 |
+
["ffmpeg", "-i", "pipe:0", "-f", "wav", "pipe:1"],
|
34 |
+
input=webm_bytes,
|
35 |
+
stdout=subprocess.PIPE,
|
36 |
+
stderr=subprocess.PIPE # Capture stderr now
|
37 |
+
)
|
38 |
+
|
39 |
+
if process.returncode != 0:
|
40 |
+
print("❌ ffmpeg error:", process.stderr.decode())
|
41 |
+
raise RuntimeError("ffmpeg conversion failed")
|
42 |
+
|
43 |
+
return io.BytesIO(process.stdout)
|
44 |
+
|
45 |
+
|
46 |
+
@app.post("/api/transcribe")
|
47 |
+
async def transcribe(audio: UploadFile = File(...)):
|
48 |
+
# Read uploaded file
|
49 |
+
contents = await audio.read()
|
50 |
+
|
51 |
+
# Convert webm to wav in-memory
|
52 |
+
wav_io = convert_webm_to_wav(contents)
|
53 |
+
|
54 |
+
# Load into torch tensor
|
55 |
+
waveform, sample_rate = torchaudio.load(wav_io)
|
56 |
+
|
57 |
+
# Resample if needed
|
58 |
+
if sample_rate != 16000:
|
59 |
+
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
|
60 |
+
sample_rate = 16000
|
61 |
+
|
62 |
+
# Run through model
|
63 |
+
input_values = processor(waveform.squeeze(), sampling_rate=sample_rate, return_tensors="pt").input_values
|
64 |
+
with torch.no_grad():
|
65 |
+
logits = model(input_values).logits
|
66 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
67 |
+
|
68 |
+
# Decode to text
|
69 |
+
transcription = processor.decode(predicted_ids[0])
|
70 |
+
|
71 |
+
return {"phonemes": transcription}
|
72 |
+
|
73 |
@app.get("/")
|
74 |
+
def root():
|
75 |
+
return {"message": "Backend is running"}
|
76 |
+
|