Spaces:
Sleeping
Sleeping
File size: 1,536 Bytes
5b3feb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import keras
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
def create_finetune_model(input_shape, regs, n_classes, drop_rate = 0.1):
model = keras.models.Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=(*input_shape, 1), kernel_regularizer=regs, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(drop_rate))
model.add(Conv2D(64, kernel_size=(3,3), padding='same', activation='relu', kernel_regularizer=regs))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(drop_rate))
model.add(Conv2D(128, kernel_size=(3,3), padding='same', activation='relu', kernel_regularizer=regs))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(drop_rate))
model.add(Conv2D(256, kernel_size=(3,3), padding='same', activation='relu', kernel_regularizer=regs))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(drop_rate))
model.add(Flatten())
model.add(Dense(512, activation='relu', kernel_regularizer=regs))
model.add(Dropout(drop_rate))
model.add(Dense(n_classes, activation='softmax', kernel_regularizer=regs))
return model
def get_model(weight_file):
regularizer = keras.regularizers.L1(0.0001)
model = create_finetune_model((256, 256), regularizer, 3)
model.compile(
loss = 'categorical_crossentropy',
optimizer='adam'
)
model.load_weights(weight_file)
return model |