import keras from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense def create_finetune_model(input_shape, regs, n_classes, drop_rate = 0.1): model = keras.models.Sequential() model.add(Conv2D(32, kernel_size=(3,3), input_shape=(*input_shape, 1), kernel_regularizer=regs, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(drop_rate)) model.add(Conv2D(64, kernel_size=(3,3), padding='same', activation='relu', kernel_regularizer=regs)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(drop_rate)) model.add(Conv2D(128, kernel_size=(3,3), padding='same', activation='relu', kernel_regularizer=regs)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(drop_rate)) model.add(Conv2D(256, kernel_size=(3,3), padding='same', activation='relu', kernel_regularizer=regs)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(drop_rate)) model.add(Flatten()) model.add(Dense(512, activation='relu', kernel_regularizer=regs)) model.add(Dropout(drop_rate)) model.add(Dense(n_classes, activation='softmax', kernel_regularizer=regs)) return model def get_model(weight_file): regularizer = keras.regularizers.L1(0.0001) model = create_finetune_model((256, 256), regularizer, 3) model.compile( loss = 'categorical_crossentropy', optimizer='adam' ) model.load_weights(weight_file) return model