Spaces:
Runtime error
Runtime error
updates
Browse files- app.py +39 -13
- model_info_cache.pkl +2 -2
- model_size_cache.pkl +3 -0
- requirements.txt +1 -0
- src/display_models/get_model_metadata.py +27 -9
- src/display_models/model_metadata_flags.py +3 -0
- src/display_models/model_metadata_type.py +1 -1
app.py
CHANGED
|
@@ -102,11 +102,6 @@ models = original_df["model_name_for_query"].tolist() # needed for model backlin
|
|
| 102 |
|
| 103 |
to_be_dumped = f"models = {repr(models)}\n"
|
| 104 |
|
| 105 |
-
# with open("models_backlinks.py", "w") as f:
|
| 106 |
-
# f.write(to_be_dumped)
|
| 107 |
-
|
| 108 |
-
# print(to_be_dumped)
|
| 109 |
-
|
| 110 |
leaderboard_df = original_df.copy()
|
| 111 |
(
|
| 112 |
finished_eval_queue_df,
|
|
@@ -216,8 +211,8 @@ def change_tab(query_param: str):
|
|
| 216 |
|
| 217 |
|
| 218 |
# Searching and filtering
|
| 219 |
-
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, size_query: list, show_deleted: bool, query: str):
|
| 220 |
-
filtered_df = filter_models(hidden_df, type_query, size_query, show_deleted)
|
| 221 |
if query != "":
|
| 222 |
filtered_df = search_table(filtered_df, query)
|
| 223 |
df = select_columns(filtered_df, columns)
|
|
@@ -249,7 +244,7 @@ NUMERIC_INTERVALS = {
|
|
| 249 |
}
|
| 250 |
|
| 251 |
def filter_models(
|
| 252 |
-
df: pd.DataFrame, type_query: list, size_query: list, show_deleted: bool
|
| 253 |
) -> pd.DataFrame:
|
| 254 |
# Show all models
|
| 255 |
if show_deleted:
|
|
@@ -259,6 +254,7 @@ def filter_models(
|
|
| 259 |
|
| 260 |
type_emoji = [t[0] for t in type_query]
|
| 261 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
|
|
| 262 |
|
| 263 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 264 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
@@ -277,6 +273,12 @@ with demo:
|
|
| 277 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 278 |
with gr.Row():
|
| 279 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
with gr.Row():
|
| 281 |
shown_columns = gr.CheckboxGroup(
|
| 282 |
choices=[
|
|
@@ -310,11 +312,6 @@ with demo:
|
|
| 310 |
value=True, label="Show gated/private/deleted models", interactive=True
|
| 311 |
)
|
| 312 |
with gr.Column(min_width=320):
|
| 313 |
-
search_bar = gr.Textbox(
|
| 314 |
-
placeholder="🔍 Search for your model and press ENTER...",
|
| 315 |
-
show_label=False,
|
| 316 |
-
elem_id="search-bar",
|
| 317 |
-
)
|
| 318 |
with gr.Box(elem_id="box-filter"):
|
| 319 |
filter_columns_type = gr.CheckboxGroup(
|
| 320 |
label="Model types",
|
|
@@ -323,16 +320,25 @@ with demo:
|
|
| 323 |
ModelType.FT.to_str(),
|
| 324 |
ModelType.IFT.to_str(),
|
| 325 |
ModelType.RL.to_str(),
|
|
|
|
| 326 |
],
|
| 327 |
value=[
|
| 328 |
ModelType.PT.to_str(),
|
| 329 |
ModelType.FT.to_str(),
|
| 330 |
ModelType.IFT.to_str(),
|
| 331 |
ModelType.RL.to_str(),
|
|
|
|
| 332 |
],
|
| 333 |
interactive=True,
|
| 334 |
elem_id="filter-columns-type",
|
| 335 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
filter_columns_size = gr.CheckboxGroup(
|
| 337 |
label="Model sizes",
|
| 338 |
choices=list(NUMERIC_INTERVALS.keys()),
|
|
@@ -375,6 +381,7 @@ with demo:
|
|
| 375 |
leaderboard_table,
|
| 376 |
shown_columns,
|
| 377 |
filter_columns_type,
|
|
|
|
| 378 |
filter_columns_size,
|
| 379 |
deleted_models_visibility,
|
| 380 |
search_bar,
|
|
@@ -388,6 +395,7 @@ with demo:
|
|
| 388 |
leaderboard_table,
|
| 389 |
shown_columns,
|
| 390 |
filter_columns_type,
|
|
|
|
| 391 |
filter_columns_size,
|
| 392 |
deleted_models_visibility,
|
| 393 |
search_bar,
|
|
@@ -402,6 +410,22 @@ with demo:
|
|
| 402 |
leaderboard_table,
|
| 403 |
shown_columns,
|
| 404 |
filter_columns_type,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
filter_columns_size,
|
| 406 |
deleted_models_visibility,
|
| 407 |
search_bar,
|
|
@@ -416,6 +440,7 @@ with demo:
|
|
| 416 |
leaderboard_table,
|
| 417 |
shown_columns,
|
| 418 |
filter_columns_type,
|
|
|
|
| 419 |
filter_columns_size,
|
| 420 |
deleted_models_visibility,
|
| 421 |
search_bar,
|
|
@@ -430,6 +455,7 @@ with demo:
|
|
| 430 |
leaderboard_table,
|
| 431 |
shown_columns,
|
| 432 |
filter_columns_type,
|
|
|
|
| 433 |
filter_columns_size,
|
| 434 |
deleted_models_visibility,
|
| 435 |
search_bar,
|
|
|
|
| 102 |
|
| 103 |
to_be_dumped = f"models = {repr(models)}\n"
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
leaderboard_df = original_df.copy()
|
| 106 |
(
|
| 107 |
finished_eval_queue_df,
|
|
|
|
| 211 |
|
| 212 |
|
| 213 |
# Searching and filtering
|
| 214 |
+
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, show_deleted: bool, query: str):
|
| 215 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 216 |
if query != "":
|
| 217 |
filtered_df = search_table(filtered_df, query)
|
| 218 |
df = select_columns(filtered_df, columns)
|
|
|
|
| 244 |
}
|
| 245 |
|
| 246 |
def filter_models(
|
| 247 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 248 |
) -> pd.DataFrame:
|
| 249 |
# Show all models
|
| 250 |
if show_deleted:
|
|
|
|
| 254 |
|
| 255 |
type_emoji = [t[0] for t in type_query]
|
| 256 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 257 |
+
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 258 |
|
| 259 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 260 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
|
| 273 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 274 |
with gr.Row():
|
| 275 |
with gr.Column():
|
| 276 |
+
with gr.Row():
|
| 277 |
+
search_bar = gr.Textbox(
|
| 278 |
+
placeholder=" 🔍 Search for your model and press ENTER...",
|
| 279 |
+
show_label=False,
|
| 280 |
+
elem_id="search-bar",
|
| 281 |
+
)
|
| 282 |
with gr.Row():
|
| 283 |
shown_columns = gr.CheckboxGroup(
|
| 284 |
choices=[
|
|
|
|
| 312 |
value=True, label="Show gated/private/deleted models", interactive=True
|
| 313 |
)
|
| 314 |
with gr.Column(min_width=320):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
with gr.Box(elem_id="box-filter"):
|
| 316 |
filter_columns_type = gr.CheckboxGroup(
|
| 317 |
label="Model types",
|
|
|
|
| 320 |
ModelType.FT.to_str(),
|
| 321 |
ModelType.IFT.to_str(),
|
| 322 |
ModelType.RL.to_str(),
|
| 323 |
+
ModelType.Unknown.to_str(),
|
| 324 |
],
|
| 325 |
value=[
|
| 326 |
ModelType.PT.to_str(),
|
| 327 |
ModelType.FT.to_str(),
|
| 328 |
ModelType.IFT.to_str(),
|
| 329 |
ModelType.RL.to_str(),
|
| 330 |
+
ModelType.Unknown.to_str(),
|
| 331 |
],
|
| 332 |
interactive=True,
|
| 333 |
elem_id="filter-columns-type",
|
| 334 |
)
|
| 335 |
+
filter_columns_precision = gr.CheckboxGroup(
|
| 336 |
+
label="Precision",
|
| 337 |
+
choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
| 338 |
+
value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
| 339 |
+
interactive=True,
|
| 340 |
+
elem_id="filter-columns-precision",
|
| 341 |
+
)
|
| 342 |
filter_columns_size = gr.CheckboxGroup(
|
| 343 |
label="Model sizes",
|
| 344 |
choices=list(NUMERIC_INTERVALS.keys()),
|
|
|
|
| 381 |
leaderboard_table,
|
| 382 |
shown_columns,
|
| 383 |
filter_columns_type,
|
| 384 |
+
filter_columns_precision,
|
| 385 |
filter_columns_size,
|
| 386 |
deleted_models_visibility,
|
| 387 |
search_bar,
|
|
|
|
| 395 |
leaderboard_table,
|
| 396 |
shown_columns,
|
| 397 |
filter_columns_type,
|
| 398 |
+
filter_columns_precision,
|
| 399 |
filter_columns_size,
|
| 400 |
deleted_models_visibility,
|
| 401 |
search_bar,
|
|
|
|
| 410 |
leaderboard_table,
|
| 411 |
shown_columns,
|
| 412 |
filter_columns_type,
|
| 413 |
+
filter_columns_precision,
|
| 414 |
+
filter_columns_size,
|
| 415 |
+
deleted_models_visibility,
|
| 416 |
+
search_bar,
|
| 417 |
+
],
|
| 418 |
+
leaderboard_table,
|
| 419 |
+
queue=True,
|
| 420 |
+
)
|
| 421 |
+
filter_columns_precision.change(
|
| 422 |
+
update_table,
|
| 423 |
+
[
|
| 424 |
+
hidden_leaderboard_table_for_search,
|
| 425 |
+
leaderboard_table,
|
| 426 |
+
shown_columns,
|
| 427 |
+
filter_columns_type,
|
| 428 |
+
filter_columns_precision,
|
| 429 |
filter_columns_size,
|
| 430 |
deleted_models_visibility,
|
| 431 |
search_bar,
|
|
|
|
| 440 |
leaderboard_table,
|
| 441 |
shown_columns,
|
| 442 |
filter_columns_type,
|
| 443 |
+
filter_columns_precision,
|
| 444 |
filter_columns_size,
|
| 445 |
deleted_models_visibility,
|
| 446 |
search_bar,
|
|
|
|
| 455 |
leaderboard_table,
|
| 456 |
shown_columns,
|
| 457 |
filter_columns_type,
|
| 458 |
+
filter_columns_precision,
|
| 459 |
filter_columns_size,
|
| 460 |
deleted_models_visibility,
|
| 461 |
search_bar,
|
model_info_cache.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c80b745050df96eb1bc908e15b2406533b076c9160486a48b88c8a29f1ed312
|
| 3 |
+
size 2985167
|
model_size_cache.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5b09d9f81d22f7849f92081950b675c2d68e3bfd320e5dfd1892d14602a29a2
|
| 3 |
+
size 58166
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
aiofiles==23.1.0
|
| 2 |
aiohttp==3.8.4
|
| 3 |
aiosignal==1.3.1
|
|
|
|
| 1 |
+
accelerate==0.23.0
|
| 2 |
aiofiles==23.1.0
|
| 3 |
aiohttp==3.8.4
|
| 4 |
aiosignal==1.3.1
|
src/display_models/get_model_metadata.py
CHANGED
|
@@ -8,6 +8,8 @@ from typing import List
|
|
| 8 |
import huggingface_hub
|
| 9 |
from huggingface_hub import HfApi
|
| 10 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 11 |
|
| 12 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
| 13 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
|
@@ -21,8 +23,13 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
| 21 |
try:
|
| 22 |
with open("model_info_cache.pkl", "rb") as f:
|
| 23 |
model_info_cache = pickle.load(f)
|
| 24 |
-
except EOFError:
|
| 25 |
model_info_cache = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
for model_data in tqdm(leaderboard_data):
|
| 28 |
model_name = model_data["model_name_for_query"]
|
|
@@ -37,16 +44,21 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
| 37 |
print("Repo not found!", model_name)
|
| 38 |
model_data[AutoEvalColumn.license.name] = None
|
| 39 |
model_data[AutoEvalColumn.likes.name] = None
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
| 44 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# save cache to disk in pickle format
|
| 48 |
with open("model_info_cache.pkl", "wb") as f:
|
| 49 |
pickle.dump(model_info_cache, f)
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
def get_model_license(model_info):
|
|
@@ -69,11 +81,17 @@ def get_model_size(model_name, model_info):
|
|
| 69 |
return round(model_info.safetensors["total"] / 1e9, 3)
|
| 70 |
except AttributeError:
|
| 71 |
try:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
def get_model_type(leaderboard_data: List[dict]):
|
|
|
|
| 8 |
import huggingface_hub
|
| 9 |
from huggingface_hub import HfApi
|
| 10 |
from tqdm import tqdm
|
| 11 |
+
from transformers import AutoModel, AutoConfig
|
| 12 |
+
from accelerate import init_empty_weights
|
| 13 |
|
| 14 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
| 15 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
|
|
|
| 23 |
try:
|
| 24 |
with open("model_info_cache.pkl", "rb") as f:
|
| 25 |
model_info_cache = pickle.load(f)
|
| 26 |
+
except (EOFError, FileNotFoundError):
|
| 27 |
model_info_cache = {}
|
| 28 |
+
try:
|
| 29 |
+
with open("model_size_cache.pkl", "rb") as f:
|
| 30 |
+
model_size_cache = pickle.load(f)
|
| 31 |
+
except (EOFError, FileNotFoundError):
|
| 32 |
+
model_size_cache = {}
|
| 33 |
|
| 34 |
for model_data in tqdm(leaderboard_data):
|
| 35 |
model_name = model_data["model_name_for_query"]
|
|
|
|
| 44 |
print("Repo not found!", model_name)
|
| 45 |
model_data[AutoEvalColumn.license.name] = None
|
| 46 |
model_data[AutoEvalColumn.likes.name] = None
|
| 47 |
+
if model_name not in model_size_cache:
|
| 48 |
+
model_size_cache[model_name] = get_model_size(model_name, None)
|
| 49 |
+
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
| 50 |
|
| 51 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
| 52 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
| 53 |
+
if model_name not in model_size_cache:
|
| 54 |
+
model_size_cache[model_name] = get_model_size(model_name, model_info)
|
| 55 |
+
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
| 56 |
|
| 57 |
# save cache to disk in pickle format
|
| 58 |
with open("model_info_cache.pkl", "wb") as f:
|
| 59 |
pickle.dump(model_info_cache, f)
|
| 60 |
+
with open("model_size_cache.pkl", "wb") as f:
|
| 61 |
+
pickle.dump(model_size_cache, f)
|
| 62 |
|
| 63 |
|
| 64 |
def get_model_license(model_info):
|
|
|
|
| 81 |
return round(model_info.safetensors["total"] / 1e9, 3)
|
| 82 |
except AttributeError:
|
| 83 |
try:
|
| 84 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=False)
|
| 85 |
+
with init_empty_weights():
|
| 86 |
+
model = AutoModel.from_config(config, trust_remote_code=False)
|
| 87 |
+
return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3)
|
| 88 |
+
except (EnvironmentError, ValueError, KeyError): # model config not found, likely private
|
| 89 |
+
try:
|
| 90 |
+
size_match = re.search(size_pattern, model_name.lower())
|
| 91 |
+
size = size_match.group(0)
|
| 92 |
+
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
| 93 |
+
except AttributeError:
|
| 94 |
+
return 0
|
| 95 |
|
| 96 |
|
| 97 |
def get_model_type(leaderboard_data: List[dict]):
|
src/display_models/model_metadata_flags.py
CHANGED
|
@@ -7,6 +7,9 @@ FLAGGED_MODELS = {
|
|
| 7 |
"Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
|
| 8 |
"TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
|
| 9 |
"gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
|
|
|
|
|
|
|
|
|
|
| 10 |
}
|
| 11 |
|
| 12 |
# Models which have been requested by orgs to not be submitted on the leaderboard
|
|
|
|
| 7 |
"Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
|
| 8 |
"TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
|
| 9 |
"gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
|
| 10 |
+
"AIDC-ai-business/Marcoroni-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
|
| 11 |
+
"AIDC-ai-business/Marcoroni-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
|
| 12 |
+
"AIDC-ai-business/Marcoroni-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
|
| 13 |
}
|
| 14 |
|
| 15 |
# Models which have been requested by orgs to not be submitted on the leaderboard
|
src/display_models/model_metadata_type.py
CHANGED
|
@@ -14,7 +14,7 @@ class ModelType(Enum):
|
|
| 14 |
FT = ModelInfo(name="fine-tuned", symbol="🔶")
|
| 15 |
IFT = ModelInfo(name="instruction-tuned", symbol="⭕")
|
| 16 |
RL = ModelInfo(name="RL-tuned", symbol="🟦")
|
| 17 |
-
Unknown = ModelInfo(name="Unknown
|
| 18 |
|
| 19 |
def to_str(self, separator=" "):
|
| 20 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
|
|
|
| 14 |
FT = ModelInfo(name="fine-tuned", symbol="🔶")
|
| 15 |
IFT = ModelInfo(name="instruction-tuned", symbol="⭕")
|
| 16 |
RL = ModelInfo(name="RL-tuned", symbol="🟦")
|
| 17 |
+
Unknown = ModelInfo(name="Unknown", symbol="?")
|
| 18 |
|
| 19 |
def to_str(self, separator=" "):
|
| 20 |
return f"{self.value.symbol}{separator}{self.value.name}"
|