Gül Sena Altıntaş
commited on
Commit
·
7ebe82f
1
Parent(s):
b318650
Added app
Browse files- supertoken model not working [WIP]
- app.py +798 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,798 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from collections import Counter
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
import re
|
9 |
+
import logging
|
10 |
+
from typing import List, Dict, Any
|
11 |
+
import gc
|
12 |
+
|
13 |
+
# Set up logging
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Model configurations - maps display names to HF model paths
|
18 |
+
PREDEFINED_MODELS = [
|
19 |
+
"meta-llama/Llama-3.2-1B",
|
20 |
+
"google/gemma-2-2b",
|
21 |
+
"Qwen/Qwen3-0.6B",
|
22 |
+
"Qwen/Qwen2.5-0.5B",
|
23 |
+
"Qwen/Qwen2.5-1.5B",
|
24 |
+
"bigscience/bloom-560m",
|
25 |
+
"CohereForAI/aya-expanse-8b",
|
26 |
+
"common-pile/comma-v0.1-2t",
|
27 |
+
"google/byt5-small",
|
28 |
+
"google/byt5-small",
|
29 |
+
"gsaltintas/supertoken_models-llama_gpt2",
|
30 |
+
]
|
31 |
+
# Global cache for loaded models
|
32 |
+
model_cache = {}
|
33 |
+
|
34 |
+
def parse_dataset(text):
|
35 |
+
"""Parse the input dataset text into structured questions"""
|
36 |
+
if not text.strip():
|
37 |
+
return [], "Please enter your dataset"
|
38 |
+
|
39 |
+
lines = text.strip().split('\n')
|
40 |
+
if len(lines) < 2:
|
41 |
+
return [], "Dataset must have at least a header and one question"
|
42 |
+
|
43 |
+
# Skip header and detect delimiter
|
44 |
+
first_data_line = lines[1] if len(lines) > 1 else lines[0]
|
45 |
+
delimiter = '\t' if '\t' in first_data_line else ','
|
46 |
+
|
47 |
+
questions = []
|
48 |
+
errors = []
|
49 |
+
|
50 |
+
for i, line in enumerate(lines[1:], 2): # Start from line 2 (after header)
|
51 |
+
line = line.strip()
|
52 |
+
if not line:
|
53 |
+
continue
|
54 |
+
|
55 |
+
parts = [part.strip().strip('"') for part in line.split(delimiter)]
|
56 |
+
|
57 |
+
if len(parts) < 5:
|
58 |
+
errors.append(f"Line {i}: Not enough columns (need 5, got {len(parts)})")
|
59 |
+
continue
|
60 |
+
|
61 |
+
question = {
|
62 |
+
'question': parts[0],
|
63 |
+
'correct_answer': parts[1],
|
64 |
+
'choices': [parts[2], parts[3], parts[4]]
|
65 |
+
}
|
66 |
+
|
67 |
+
# Ensure correct answer is in choices
|
68 |
+
if question['correct_answer'] not in question['choices']:
|
69 |
+
question['choices'].append(question['correct_answer'])
|
70 |
+
|
71 |
+
questions.append(question)
|
72 |
+
|
73 |
+
error_msg = '\n'.join(errors) if errors else ""
|
74 |
+
return questions, error_msg
|
75 |
+
|
76 |
+
|
77 |
+
def load_model_and_tokenizer(model_path, use_cache=True, progress_callback=None):
|
78 |
+
"""Load model and tokenizer with caching"""
|
79 |
+
global model_cache
|
80 |
+
|
81 |
+
if use_cache and model_path in model_cache:
|
82 |
+
logger.info(f"Using cached model: {model_path}")
|
83 |
+
if progress_callback:
|
84 |
+
progress_callback(1.0, f"✅ Using cached model: {model_path}")
|
85 |
+
return model_cache[model_path]
|
86 |
+
|
87 |
+
try:
|
88 |
+
if progress_callback:
|
89 |
+
progress_callback(0.1, f"🔄 Starting to load model: {model_path}")
|
90 |
+
|
91 |
+
logger.info(f"Loading model: {model_path}")
|
92 |
+
|
93 |
+
# Check if CUDA is available
|
94 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
95 |
+
|
96 |
+
if progress_callback:
|
97 |
+
progress_callback(0.2, f"📥 Loading tokenizer for {model_path}...")
|
98 |
+
|
99 |
+
# Load tokenizer
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, legacy=True)
|
101 |
+
|
102 |
+
# Add pad token if missing
|
103 |
+
if tokenizer.pad_token is None:
|
104 |
+
tokenizer.pad_token = tokenizer.eos_token
|
105 |
+
|
106 |
+
if progress_callback:
|
107 |
+
progress_callback(0.5, f"🧠 Loading model weights for {model_path}... (this may take a while)")
|
108 |
+
|
109 |
+
# Load model with appropriate settings
|
110 |
+
model = AutoModelForCausalLM.from_pretrained(
|
111 |
+
model_path,
|
112 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
113 |
+
device_map="auto" if device == "cuda" else None,
|
114 |
+
trust_remote_code=True,
|
115 |
+
low_cpu_mem_usage=True
|
116 |
+
)
|
117 |
+
|
118 |
+
model_info = {
|
119 |
+
'tokenizer': tokenizer,
|
120 |
+
'model': model,
|
121 |
+
'device': device
|
122 |
+
}
|
123 |
+
|
124 |
+
if use_cache:
|
125 |
+
model_cache[model_path] = model_info
|
126 |
+
|
127 |
+
if progress_callback:
|
128 |
+
progress_callback(1.0, f"✅ Successfully loaded model: {model_path}")
|
129 |
+
|
130 |
+
return model_info
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
import code
|
134 |
+
code.interact(local=dict(globals(), **locals()))
|
135 |
+
error_msg = f"❌ Error loading model {model_path}: {str(e)}"
|
136 |
+
logger.error(error_msg)
|
137 |
+
if progress_callback:
|
138 |
+
progress_callback(0.0, error_msg)
|
139 |
+
return None
|
140 |
+
|
141 |
+
def calculate_choice_likelihood(model, tokenizer, question, choice):
|
142 |
+
"""Calculate the log-likelihood of the choice given the question prompt"""
|
143 |
+
try:
|
144 |
+
prompt = f"Question: {question}\nAnswer: "
|
145 |
+
prompt=question
|
146 |
+
full_text = f"{prompt} {choice}"
|
147 |
+
|
148 |
+
# Tokenize full input (prompt + answer)
|
149 |
+
input_ids = tokenizer.encode(full_text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
150 |
+
prompt_ids = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).to(model.device)
|
151 |
+
|
152 |
+
if input_ids.size(1) <= prompt_ids.size(1):
|
153 |
+
logger.warning("Answer tokens are empty after tokenization.")
|
154 |
+
return float("-inf")
|
155 |
+
|
156 |
+
with torch.no_grad():
|
157 |
+
outputs = model(input_ids)
|
158 |
+
logits = outputs.logits
|
159 |
+
|
160 |
+
# Get logits for the answer tokens only
|
161 |
+
answer_len = input_ids.size(1) - prompt_ids.size(1)
|
162 |
+
target_ids = input_ids[:, -answer_len:]
|
163 |
+
logits = logits[:, prompt_ids.size(1)-1:-1, :] # shifted for next-token prediction
|
164 |
+
|
165 |
+
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
|
166 |
+
token_log_probs = log_probs.gather(2, target_ids.unsqueeze(-1)).squeeze(-1)
|
167 |
+
|
168 |
+
total_log_prob = token_log_probs.sum().item()
|
169 |
+
return total_log_prob
|
170 |
+
|
171 |
+
except Exception as e:
|
172 |
+
logger.error(f"Error calculating likelihood for choice '{choice}': {str(e)}")
|
173 |
+
return float("-inf")
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
def evaluate_model_on_questions(model_path, questions, progress_callback=None):
|
178 |
+
"""Evaluate a single model on all questions using likelihood-based scoring"""
|
179 |
+
|
180 |
+
model_info = load_model_and_tokenizer(model_path, progress_callback=progress_callback)
|
181 |
+
|
182 |
+
if model_info is None:
|
183 |
+
return [{'error': f'Failed to load model {model_path}'}] * len(questions)
|
184 |
+
|
185 |
+
results = []
|
186 |
+
model = model_info['model']
|
187 |
+
tokenizer = model_info['tokenizer']
|
188 |
+
|
189 |
+
for i, question in enumerate(questions):
|
190 |
+
try:
|
191 |
+
# Calculate likelihood for each choice
|
192 |
+
choice_likelihoods = {}
|
193 |
+
choice_probs = {}
|
194 |
+
|
195 |
+
for choice in question['choices']:
|
196 |
+
likelihood = calculate_choice_likelihood(model, tokenizer, question['question'], choice)
|
197 |
+
choice_likelihoods[choice] = likelihood
|
198 |
+
|
199 |
+
# Convert log probabilities to probabilities for confidence scoring
|
200 |
+
max_log_prob = max(choice_likelihoods.values())
|
201 |
+
choice_probs = {choice: torch.exp(torch.tensor(log_prob - max_log_prob)).item()
|
202 |
+
for choice, log_prob in choice_likelihoods.items()}
|
203 |
+
|
204 |
+
# Normalize probabilities
|
205 |
+
total_prob = sum(choice_probs.values())
|
206 |
+
if total_prob > 0:
|
207 |
+
choice_probs = {choice: prob / total_prob for choice, prob in choice_probs.items()}
|
208 |
+
|
209 |
+
# Select the choice with highest likelihood
|
210 |
+
predicted_choice = max(choice_likelihoods.keys(), key=lambda x: choice_likelihoods[x])
|
211 |
+
is_correct = predicted_choice == question['correct_answer']
|
212 |
+
|
213 |
+
# Confidence is the probability of the selected choice
|
214 |
+
confidence = choice_probs.get(predicted_choice, 0.0)
|
215 |
+
|
216 |
+
results.append({
|
217 |
+
'question_idx': i,
|
218 |
+
'predicted': predicted_choice,
|
219 |
+
'correct': is_correct,
|
220 |
+
'confidence': confidence,
|
221 |
+
'choice_likelihoods': choice_likelihoods,
|
222 |
+
'choice_probabilities': choice_probs,
|
223 |
+
'raw_response': f"Likelihoods: {choice_likelihoods}"
|
224 |
+
})
|
225 |
+
|
226 |
+
if progress_callback:
|
227 |
+
# Use remaining 80% for evaluation progress
|
228 |
+
evaluation_progress = 0.2 + (i + 1) / len(questions) * 0.8
|
229 |
+
progress_callback(evaluation_progress, f"🔍 Evaluating {model_path}: {i+1}/{len(questions)} questions (likelihood-based)")
|
230 |
+
|
231 |
+
except Exception as e:
|
232 |
+
logger.error(f"Error evaluating question {i} with {model_path}: {str(e)}")
|
233 |
+
results.append({
|
234 |
+
'question_idx': i,
|
235 |
+
'predicted': question['choices'][0] if question['choices'] else '',
|
236 |
+
'correct': False,
|
237 |
+
'confidence': 0.0,
|
238 |
+
'choice_likelihoods': {},
|
239 |
+
'choice_probabilities': {},
|
240 |
+
'raw_response': f"Error: {str(e)}"
|
241 |
+
})
|
242 |
+
|
243 |
+
return results
|
244 |
+
|
245 |
+
def run_evaluation(dataset_text, selected_predefined, custom_models_text, progress=gr.Progress()):
|
246 |
+
"""Main evaluation function"""
|
247 |
+
if not dataset_text.strip():
|
248 |
+
return (
|
249 |
+
"Please enter your dataset",
|
250 |
+
"<p>No data provided</p>",
|
251 |
+
None,
|
252 |
+
None,
|
253 |
+
gr.update(visible=True)
|
254 |
+
)
|
255 |
+
|
256 |
+
# Parse custom models
|
257 |
+
custom_models = []
|
258 |
+
if custom_models_text.strip():
|
259 |
+
custom_models = [model.strip() for model in custom_models_text.strip().split('\n') if model.strip()]
|
260 |
+
|
261 |
+
# Combine selected models
|
262 |
+
all_models = []
|
263 |
+
|
264 |
+
# Add predefined models
|
265 |
+
all_models.extend(selected_predefined)
|
266 |
+
all_models.extend(custom_models)
|
267 |
+
|
268 |
+
if not all_models:
|
269 |
+
return (
|
270 |
+
"Please select at least one model or add custom models",
|
271 |
+
"<p>No models selected</p>",
|
272 |
+
None,
|
273 |
+
None,
|
274 |
+
gr.update(visible=False)
|
275 |
+
)
|
276 |
+
|
277 |
+
# Parse dataset
|
278 |
+
questions, parse_error = parse_dataset(dataset_text)
|
279 |
+
|
280 |
+
if parse_error:
|
281 |
+
return (
|
282 |
+
f"Dataset parsing error:\n{parse_error}",
|
283 |
+
"<p>Failed to parse dataset</p>",
|
284 |
+
None,
|
285 |
+
None,
|
286 |
+
gr.update(visible=True)
|
287 |
+
)
|
288 |
+
|
289 |
+
if not questions:
|
290 |
+
return (
|
291 |
+
"No valid questions found in dataset",
|
292 |
+
"<p>No questions to evaluate</p>",
|
293 |
+
None,
|
294 |
+
None,
|
295 |
+
gr.update(visible=True)
|
296 |
+
)
|
297 |
+
|
298 |
+
# Run evaluation
|
299 |
+
progress(0, "Starting evaluation...")
|
300 |
+
results = {}
|
301 |
+
total_steps = len(all_models) * len(questions)
|
302 |
+
current_step = 0
|
303 |
+
|
304 |
+
summary_md = create_summary_markdown({})
|
305 |
+
for model_path in all_models:
|
306 |
+
display_name = model_path.split('/')[-1] if '/' in model_path else model_path
|
307 |
+
try:
|
308 |
+
def model_progress(p, msg):
|
309 |
+
nonlocal current_step
|
310 |
+
current_step = int(p * len(questions))
|
311 |
+
overall_progress = current_step / total_steps
|
312 |
+
progress(overall_progress, msg)
|
313 |
+
|
314 |
+
model_results = evaluate_model_on_questions(model_path, questions, model_progress)
|
315 |
+
results[display_name] = model_results
|
316 |
+
|
317 |
+
except Exception as e:
|
318 |
+
logger.error(f"Failed to evaluate {display_name}: {str(e)}")
|
319 |
+
results[display_name] = [{'error': str(e)}] * len(questions)
|
320 |
+
|
321 |
+
# Clean up GPU memory
|
322 |
+
if torch.cuda.is_available():
|
323 |
+
torch.cuda.empty_cache()
|
324 |
+
gc.collect()
|
325 |
+
|
326 |
+
# Generate outputs
|
327 |
+
summary_stats = generate_summary_stats(questions, results)
|
328 |
+
summary_md = create_summary_markdown(summary_stats)
|
329 |
+
detailed_html = create_detailed_results_html(questions, results)
|
330 |
+
accuracy_chart = create_accuracy_chart(summary_stats)
|
331 |
+
confidence_chart = create_confidence_chart(results)
|
332 |
+
|
333 |
+
return (
|
334 |
+
summary_md,
|
335 |
+
detailed_html,
|
336 |
+
accuracy_chart,
|
337 |
+
confidence_chart,
|
338 |
+
gr.update(visible=True)
|
339 |
+
)
|
340 |
+
|
341 |
+
def generate_summary_stats(questions, results):
|
342 |
+
"""Generate summary statistics for all models"""
|
343 |
+
summary = {}
|
344 |
+
|
345 |
+
for model, model_results in results.items():
|
346 |
+
if not model_results or 'error' in model_results[0]:
|
347 |
+
summary[model] = {
|
348 |
+
'accuracy': 0.0,
|
349 |
+
'correct': 0,
|
350 |
+
'total': len(questions),
|
351 |
+
'avg_confidence': 0.0,
|
352 |
+
'error': model_results[0].get('error', 'Unknown error') if model_results else 'No results'
|
353 |
+
}
|
354 |
+
continue
|
355 |
+
|
356 |
+
correct_count = sum(1 for r in model_results if r.get('correct', False))
|
357 |
+
total_count = len(model_results)
|
358 |
+
accuracy = correct_count / total_count if total_count > 0 else 0
|
359 |
+
|
360 |
+
# Calculate average confidence
|
361 |
+
avg_confidence = sum(r.get('confidence', 0) for r in model_results) / total_count if total_count > 0 else 0
|
362 |
+
|
363 |
+
summary[model] = {
|
364 |
+
'accuracy': accuracy,
|
365 |
+
'correct': correct_count,
|
366 |
+
'total': total_count,
|
367 |
+
'avg_confidence': avg_confidence
|
368 |
+
}
|
369 |
+
|
370 |
+
return summary
|
371 |
+
|
372 |
+
def create_summary_markdown(summary_stats):
|
373 |
+
"""Create markdown summary of results"""
|
374 |
+
if not summary_stats:
|
375 |
+
return "No results available"
|
376 |
+
|
377 |
+
# Sort by accuracy
|
378 |
+
sorted_models = sorted(summary_stats.items(), key=lambda x: x[1]['accuracy'], reverse=True)
|
379 |
+
|
380 |
+
lines = ["## 🏆 Model Performance Summary\n"]
|
381 |
+
|
382 |
+
for i, (model, stats) in enumerate(sorted_models):
|
383 |
+
if 'error' in stats:
|
384 |
+
lines.append(f"❌ **{model}**: Error - {stats['error']}")
|
385 |
+
continue
|
386 |
+
|
387 |
+
accuracy_pct = stats['accuracy'] * 100
|
388 |
+
medal = "🥇" if i == 0 else "🥈" if i == 1 else "🥉" if i == 2 else f"{i+1}."
|
389 |
+
|
390 |
+
lines.append(
|
391 |
+
f"{medal} **{model}**: {accuracy_pct:.1f}% "
|
392 |
+
f"({stats['correct']}/{stats['total']} correct, "
|
393 |
+
f"avg confidence: {stats['avg_confidence']:.2f})"
|
394 |
+
)
|
395 |
+
|
396 |
+
return "\n".join(lines)
|
397 |
+
|
398 |
+
def create_detailed_results_html(questions, results):
|
399 |
+
"""Create detailed HTML results for each question"""
|
400 |
+
if not questions or not results:
|
401 |
+
return "<p>No detailed results available</p>"
|
402 |
+
|
403 |
+
html_parts = ["""
|
404 |
+
<style>
|
405 |
+
.question-card {
|
406 |
+
background: white;
|
407 |
+
border-radius: 12px;
|
408 |
+
padding: 20px;
|
409 |
+
margin-bottom: 20px;
|
410 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
411 |
+
border-left: 5px solid #667eea;
|
412 |
+
}
|
413 |
+
.question-header {
|
414 |
+
display: flex;
|
415 |
+
justify-content: space-between;
|
416 |
+
align-items: center;
|
417 |
+
margin-bottom: 15px;
|
418 |
+
}
|
419 |
+
.question-number {
|
420 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
421 |
+
color: white;
|
422 |
+
padding: 6px 12px;
|
423 |
+
border-radius: 20px;
|
424 |
+
font-weight: bold;
|
425 |
+
font-size: 14px;
|
426 |
+
}
|
427 |
+
.question-text {
|
428 |
+
font-weight: 600;
|
429 |
+
font-size: 16px;
|
430 |
+
margin: 15px 0;
|
431 |
+
color: #2d3748;
|
432 |
+
}
|
433 |
+
.choices {
|
434 |
+
background: #f8fafc;
|
435 |
+
border-radius: 8px;
|
436 |
+
padding: 15px;
|
437 |
+
margin: 10px 0;
|
438 |
+
}
|
439 |
+
.choice {
|
440 |
+
margin: 8px 0;
|
441 |
+
color: #4a5568;
|
442 |
+
}
|
443 |
+
.correct-answer {
|
444 |
+
background: linear-gradient(135deg, #c6f6d5, #9ae6b4);
|
445 |
+
border-left: 4px solid #48bb78;
|
446 |
+
border-radius: 6px;
|
447 |
+
padding: 12px;
|
448 |
+
margin: 10px 0;
|
449 |
+
font-weight: 600;
|
450 |
+
color: #22543d;
|
451 |
+
}
|
452 |
+
.model-results {
|
453 |
+
display: grid;
|
454 |
+
grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));
|
455 |
+
gap: 12px;
|
456 |
+
margin-top: 15px;
|
457 |
+
}
|
458 |
+
.model-result {
|
459 |
+
padding: 12px;
|
460 |
+
border-radius: 8px;
|
461 |
+
text-align: center;
|
462 |
+
font-weight: 600;
|
463 |
+
transition: transform 0.2s ease;
|
464 |
+
}
|
465 |
+
.model-result:hover {
|
466 |
+
transform: scale(1.02);
|
467 |
+
}
|
468 |
+
.result-correct {
|
469 |
+
background: linear-gradient(135deg, #c6f6d5, #9ae6b4);
|
470 |
+
color: #22543d;
|
471 |
+
border: 2px solid #48bb78;
|
472 |
+
}
|
473 |
+
.result-incorrect {
|
474 |
+
background: linear-gradient(135deg, #fed7d7, #fca5a5);
|
475 |
+
color: #742a2a;
|
476 |
+
border: 2px solid #e53e3e;
|
477 |
+
}
|
478 |
+
.result-error {
|
479 |
+
background: linear-gradient(135deg, #fbb6ce, #f687b3);
|
480 |
+
color: #744210;
|
481 |
+
border: 2px solid #d69e2e;
|
482 |
+
}
|
483 |
+
.raw-response {
|
484 |
+
font-size: 10px;
|
485 |
+
margin-top: 4px;
|
486 |
+
opacity: 0.7;
|
487 |
+
font-family: monospace;
|
488 |
+
}
|
489 |
+
</style>
|
490 |
+
"""]
|
491 |
+
|
492 |
+
for q_idx, question in enumerate(questions):
|
493 |
+
html_parts.append(f"""
|
494 |
+
<div class="question-card">
|
495 |
+
<div class="question-header">
|
496 |
+
<span class="question-number">Q{q_idx + 1}</span>
|
497 |
+
</div>
|
498 |
+
<div class="question-text">{question['question']}</div>
|
499 |
+
<div class="choices">
|
500 |
+
<strong>Choices:</strong><br>
|
501 |
+
{' | '.join(f'{chr(65+i)}) {choice}' for i, choice in enumerate(question['choices']))}
|
502 |
+
</div>
|
503 |
+
<div class="correct-answer">
|
504 |
+
<strong>✓ Correct Answer:</strong> {question['correct_answer']}
|
505 |
+
</div>
|
506 |
+
<div class="model-results">
|
507 |
+
""")
|
508 |
+
|
509 |
+
# Add results for each model
|
510 |
+
for model, model_results in results.items():
|
511 |
+
if q_idx < len(model_results):
|
512 |
+
result = model_results[q_idx]
|
513 |
+
|
514 |
+
if 'error' in result:
|
515 |
+
html_parts.append(f"""
|
516 |
+
<div class="model-result result-error">
|
517 |
+
<div>⚠️ {model}</div>
|
518 |
+
<div style="font-size: 12px; margin-top: 4px;">
|
519 |
+
Error occurred
|
520 |
+
</div>
|
521 |
+
<div class="raw-response">{result.get('raw_response', 'Unknown error')}</div>
|
522 |
+
</div>
|
523 |
+
""")
|
524 |
+
else:
|
525 |
+
result_class = 'result-correct' if result.get('correct', False) else 'result-incorrect'
|
526 |
+
icon = '✅' if result.get('correct', False) else '❌'
|
527 |
+
|
528 |
+
html_parts.append(f"""
|
529 |
+
<div class="model-result {result_class}">
|
530 |
+
<div>{icon} {model}</div>
|
531 |
+
<div style="font-size: 12px; margin-top: 4px;">
|
532 |
+
"{result.get('predicted', 'No prediction')}"
|
533 |
+
</div>
|
534 |
+
<div class="raw-response">Raw: "{result.get('raw_response', '')}"</div>
|
535 |
+
</div>
|
536 |
+
""")
|
537 |
+
|
538 |
+
html_parts.append("""
|
539 |
+
</div>
|
540 |
+
</div>
|
541 |
+
""")
|
542 |
+
|
543 |
+
return "".join(html_parts)
|
544 |
+
|
545 |
+
def create_accuracy_chart(summary_stats):
|
546 |
+
"""Create accuracy comparison chart"""
|
547 |
+
if not summary_stats:
|
548 |
+
return None
|
549 |
+
|
550 |
+
models = []
|
551 |
+
accuracies = []
|
552 |
+
|
553 |
+
for model, stats in summary_stats.items():
|
554 |
+
if 'error' not in stats:
|
555 |
+
models.append(model)
|
556 |
+
accuracies.append(stats['accuracy'] * 100)
|
557 |
+
|
558 |
+
if not models:
|
559 |
+
return None
|
560 |
+
|
561 |
+
fig = go.Figure(data=[
|
562 |
+
go.Bar(
|
563 |
+
x=models,
|
564 |
+
y=accuracies,
|
565 |
+
marker_color='lightblue',
|
566 |
+
text=[f'{acc:.1f}%' for acc in accuracies],
|
567 |
+
textposition='auto',
|
568 |
+
)
|
569 |
+
])
|
570 |
+
|
571 |
+
fig.update_layout(
|
572 |
+
title="Model Accuracy Comparison",
|
573 |
+
xaxis_title="Models",
|
574 |
+
yaxis_title="Accuracy (%)",
|
575 |
+
template="plotly_white",
|
576 |
+
showlegend=False
|
577 |
+
)
|
578 |
+
|
579 |
+
return fig
|
580 |
+
|
581 |
+
def create_confidence_chart(results):
|
582 |
+
"""Create confidence distribution chart"""
|
583 |
+
if not results:
|
584 |
+
return None
|
585 |
+
|
586 |
+
data = []
|
587 |
+
for model, model_results in results.items():
|
588 |
+
for result in model_results:
|
589 |
+
if 'error' not in result and 'confidence' in result:
|
590 |
+
data.append({
|
591 |
+
'Model': model,
|
592 |
+
'Confidence': result['confidence'],
|
593 |
+
'Correct': 'Correct' if result.get('correct', False) else 'Incorrect'
|
594 |
+
})
|
595 |
+
|
596 |
+
if not data:
|
597 |
+
return None
|
598 |
+
|
599 |
+
df = pd.DataFrame(data)
|
600 |
+
|
601 |
+
fig = px.box(
|
602 |
+
df,
|
603 |
+
x='Model',
|
604 |
+
y='Confidence',
|
605 |
+
color='Correct',
|
606 |
+
title="Confidence Distribution by Model and Correctness",
|
607 |
+
template="plotly_white"
|
608 |
+
)
|
609 |
+
|
610 |
+
return fig
|
611 |
+
|
612 |
+
# Sample datasets for quick testing
|
613 |
+
SAMPLE_DATASETS = {
|
614 |
+
"Custom (enter below)": "",
|
615 |
+
"LP": """Question,Correct Answer,Choice1,Choice2,Choice3
|
616 |
+
In which country is Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch located? Wales Germany France Scotland
|
617 |
+
In which country is Llanfair pwllgwyngyll located? Wales Germany France Scotland
|
618 |
+
In which country is Llanfair PG located? Wales Germany France Scotland""",
|
619 |
+
"Simple Math": """Question,Correct Answer,Choice1,Choice2,Choice3
|
620 |
+
What is 2+2?,4,3,4,5
|
621 |
+
What is 5*3?,15,12,15,18
|
622 |
+
What is 10-7?,3,3,4,2
|
623 |
+
What is 8/2?,4,3,4,5""",
|
624 |
+
|
625 |
+
"World Capitals": """Question,Correct Answer,Choice1,Choice2,Choice3
|
626 |
+
What is the capital of France?,Paris,London,Berlin,Paris
|
627 |
+
What is the capital of Japan?,Tokyo,Seoul,Tokyo,Bangkok
|
628 |
+
What is the capital of Brazil?,Brasília,Rio de Janeiro,Brasília,São Paulo
|
629 |
+
What is the capital of Australia?,Canberra,Sydney,Melbourne,Canberra""",
|
630 |
+
|
631 |
+
"Science Quiz": """Question,Correct Answer,Choice1,Choice2,Choice3
|
632 |
+
What is the chemical symbol for gold?,Au,Ag,Au,Go
|
633 |
+
Which planet is closest to the Sun?,Mercury,Venus,Mercury,Mars
|
634 |
+
What is the speed of light?,299792458 m/s,300000000 m/s,299792458 m/s,299000000 m/s
|
635 |
+
What gas do plants absorb from the atmosphere?,Carbon dioxide,Oxygen,Carbon dioxide,Nitrogen"""
|
636 |
+
}
|
637 |
+
|
638 |
+
# Custom CSS
|
639 |
+
css = """
|
640 |
+
.gradio-container {
|
641 |
+
font-family: 'Inter', sans-serif;
|
642 |
+
}
|
643 |
+
.sample-text {
|
644 |
+
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
|
645 |
+
font-size: 12px;
|
646 |
+
}
|
647 |
+
"""
|
648 |
+
|
649 |
+
# Create Gradio interface
|
650 |
+
with gr.Blocks(title="🤖 Model Performance Comparison", theme=gr.themes.Soft(), css=css) as demo:
|
651 |
+
gr.Markdown("""
|
652 |
+
# 🤖 Model Performance Comparison Tool
|
653 |
+
|
654 |
+
Compare LLM performance on multiple-choice questions using Hugging Face models.
|
655 |
+
|
656 |
+
**Format**: Each line should have: `Question,Correct Answer,Choice1,Choice2,Choice3`
|
657 |
+
|
658 |
+
💡 **Features**:
|
659 |
+
- Model evaluation using HuggingFace transformers
|
660 |
+
- Support for custom models via HF model paths
|
661 |
+
- Detailed question-by-question results
|
662 |
+
- Performance charts and statistics
|
663 |
+
""")
|
664 |
+
|
665 |
+
with gr.Row():
|
666 |
+
with gr.Column(scale=2):
|
667 |
+
# Sample dataset selector
|
668 |
+
sample_selector = gr.Dropdown(
|
669 |
+
choices=list(SAMPLE_DATASETS.keys()),
|
670 |
+
value="Custom (enter below)",
|
671 |
+
label="Choose sample dataset or enter your own",
|
672 |
+
interactive=True
|
673 |
+
)
|
674 |
+
|
675 |
+
# Dataset input
|
676 |
+
dataset_input = gr.Textbox(
|
677 |
+
label="Dataset (CSV/TSV format)",
|
678 |
+
placeholder="""Enter your dataset here...
|
679 |
+
|
680 |
+
Example format:
|
681 |
+
Question,Correct Answer,Choice1,Choice2,Choice3
|
682 |
+
What is 2+2?,4,3,4,5
|
683 |
+
What is the capital of France?,Paris,London,Berlin,Paris""",
|
684 |
+
lines=8,
|
685 |
+
max_lines=15
|
686 |
+
)
|
687 |
+
|
688 |
+
gr.Markdown("""
|
689 |
+
**Format Requirements**:
|
690 |
+
- First line: header (will be ignored), leave empty if no header
|
691 |
+
- Each data line: Question, Correct Answer, Choice1, Choice2, Choice3
|
692 |
+
- Use commas or tabs as separators
|
693 |
+
""")
|
694 |
+
|
695 |
+
with gr.Column(scale=1):
|
696 |
+
# Model selection
|
697 |
+
with gr.Tabs():
|
698 |
+
with gr.TabItem("🤖 Predefined Models"):
|
699 |
+
predefined_selector = gr.CheckboxGroup(
|
700 |
+
choices=PREDEFINED_MODELS,
|
701 |
+
value=[PREDEFINED_MODELS[0]],
|
702 |
+
label="Select from popular models",
|
703 |
+
interactive=True
|
704 |
+
)
|
705 |
+
|
706 |
+
with gr.TabItem("➕ Custom Models"):
|
707 |
+
custom_models_input = gr.Textbox(
|
708 |
+
label="Custom HuggingFace Model Paths",
|
709 |
+
placeholder="""Enter HuggingFace model paths (one per line):
|
710 |
+
|
711 |
+
microsoft/DialoGPT-medium
|
712 |
+
bigscience/bloom-560m""",
|
713 |
+
lines=5,
|
714 |
+
info="Add any HuggingFace model path. One model per line."
|
715 |
+
)
|
716 |
+
|
717 |
+
gr.Markdown("""
|
718 |
+
**Examples of valid model paths**:
|
719 |
+
- `microsoft/DialoGPT-medium`
|
720 |
+
- `bigscience/bloom-560m`
|
721 |
+
- `facebook/opt-350m`
|
722 |
+
- Your own fine-tuned models!
|
723 |
+
""")
|
724 |
+
|
725 |
+
# Evaluate button
|
726 |
+
evaluate_btn = gr.Button(
|
727 |
+
"⚡ Run Evaluation",
|
728 |
+
variant="primary",
|
729 |
+
scale=1
|
730 |
+
)
|
731 |
+
|
732 |
+
gr.Markdown("""
|
733 |
+
**⚠️ Note**:
|
734 |
+
- Larger models require more GPU memory, currently we only run on CPU
|
735 |
+
- First run will download models (may take time)
|
736 |
+
- Models are cached for subsequent runs
|
737 |
+
""")
|
738 |
+
|
739 |
+
# Results section
|
740 |
+
with gr.Column(visible=False) as results_section:
|
741 |
+
gr.Markdown("## 📊 Results")
|
742 |
+
|
743 |
+
summary_output = gr.Markdown(
|
744 |
+
value="Results will appear here...",
|
745 |
+
label="Performance Summary"
|
746 |
+
)
|
747 |
+
|
748 |
+
with gr.Row():
|
749 |
+
accuracy_plot = gr.Plot(label="Accuracy Comparison")
|
750 |
+
confidence_plot = gr.Plot(label="Confidence Analysis")
|
751 |
+
|
752 |
+
detailed_results = gr.HTML(
|
753 |
+
value="<p>Detailed results will appear here...</p>",
|
754 |
+
label="Detailed Question-by-Question Results"
|
755 |
+
)
|
756 |
+
|
757 |
+
# Event handlers
|
758 |
+
def update_dataset_from_sample(sample_name):
|
759 |
+
if sample_name in SAMPLE_DATASETS:
|
760 |
+
return gr.update(value=SAMPLE_DATASETS[sample_name])
|
761 |
+
return gr.update()
|
762 |
+
|
763 |
+
sample_selector.change(
|
764 |
+
fn=update_dataset_from_sample,
|
765 |
+
inputs=sample_selector,
|
766 |
+
outputs=dataset_input
|
767 |
+
)
|
768 |
+
|
769 |
+
evaluate_btn.click(
|
770 |
+
fn=run_evaluation,
|
771 |
+
inputs=[dataset_input, predefined_selector, custom_models_input],
|
772 |
+
outputs=[summary_output, detailed_results, accuracy_plot, confidence_plot, results_section]
|
773 |
+
)
|
774 |
+
|
775 |
+
gr.Markdown("""
|
776 |
+
---
|
777 |
+
### About Model Evaluation
|
778 |
+
|
779 |
+
This tool loads and runs HuggingFace models for evaluation:
|
780 |
+
|
781 |
+
**🏗️ How it works**:
|
782 |
+
- Downloads models from HuggingFace Hub
|
783 |
+
- Formats questions as prompts for each model
|
784 |
+
- Runs likelihood based evaluation
|
785 |
+
|
786 |
+
**⚡ Performance Tips**:
|
787 |
+
- Use smaller models for testing
|
788 |
+
- Larger models (7B+) require significant GPU memory
|
789 |
+
- Models are cached after first load
|
790 |
+
|
791 |
+
**🔧 Supported Models**:
|
792 |
+
- Any HuggingFace autoregressive language model
|
793 |
+
- Both instruction-tuned and base models
|
794 |
+
- Custom fine-tuned models via HF paths
|
795 |
+
""")
|
796 |
+
|
797 |
+
if __name__ == "__main__":
|
798 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
tiktoken
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
pandas
|
6 |
+
plotly
|