gsarti commited on
Commit
df52f66
β€’
1 Parent(s): abc7c5c

Ruff formatting

Browse files
Files changed (1) hide show
  1. app.py +159 -56
app.py CHANGED
@@ -1,35 +1,48 @@
1
- import re
2
  import os
 
 
3
  import bm25s
4
- import spaces
5
  import gradio as gr
6
  import gradio_iframe
 
7
  from bm25s.hf import BM25HF
 
 
 
 
8
  from rerankers import Reranker
 
 
9
 
10
- from inseq import register_step_function, load_model
11
  from inseq.attr import StepFunctionArgs
12
  from inseq.commands.attribute_context import visualize_attribute_context
 
 
 
 
13
  from inseq.utils.contrast_utils import _setup_contrast_args
14
- from lxt.models.llama import LlamaForCausalLM, attnlrp
15
- from transformers import AutoTokenizer
16
- from lxt.functional import softmax, add2, mul2
17
- from inseq.commands.attribute_context.attribute_context import attribute_context_with_model, AttributeContextArgs
18
-
19
- from style import custom_css
20
- from citations import pecore_citation, mirage_citation, inseq_citation, lxt_citation
21
- from examples import examples
22
 
 
23
  model_id = "HuggingFaceTB/SmolLM-360M-Instruct"
24
- ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
25
  retriever = BM25HF.load_from_hub("xhluca/bm25s-nq-index", load_corpus=True, mmap=True)
26
- hf_model = LlamaForCausalLM.from_pretrained(model_id)
27
- tokenizer = AutoTokenizer.from_pretrained(model_id)
28
- attnlrp.register(hf_model)
29
- model = load_model(hf_model, "saliency", tokenizer=tokenizer)
30
- # Needed since the <|im_start|> token is also the BOS
31
- model.bos_token = "<|endoftext|>"
32
- model.bos_token_id = 0
 
 
 
 
 
 
 
 
 
33
 
34
 
35
  def lxt_probability_fn(args: StepFunctionArgs):
@@ -38,10 +51,11 @@ def lxt_probability_fn(args: StepFunctionArgs):
38
  logits = softmax(logits, dim=-1)
39
  return logits.gather(-1, target_ids).squeeze(-1)
40
 
 
41
  def lxt_contrast_prob_fn(
42
  args: StepFunctionArgs,
43
- contrast_sources = None,
44
- contrast_targets = None,
45
  contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
46
  contrast_force_inputs: bool = False,
47
  skip_special_tokens: bool = False,
@@ -56,10 +70,11 @@ def lxt_contrast_prob_fn(
56
  )
57
  return lxt_probability_fn(c_args)
58
 
 
59
  def lxt_contrast_prob_diff_fn(
60
  args: StepFunctionArgs,
61
- contrast_sources = None,
62
- contrast_targets = None,
63
  contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
64
  contrast_force_inputs: bool = False,
65
  skip_special_tokens: bool = False,
@@ -78,12 +93,35 @@ def lxt_contrast_prob_diff_fn(
78
 
79
  def set_interactive_settings(rag_setting, retrieve_k, top_k, custom_context):
80
  if rag_setting in ("Retrieve with BM25", "Rerank with ColBERT"):
81
- return gr.Slider(interactive=True), gr.Slider(interactive=True), gr.Textbox(placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.", interactive=False)
 
 
 
 
 
 
 
82
  elif rag_setting == "Use Custom Context":
83
- return gr.Slider(interactive=False), gr.Slider(interactive=False), gr.Textbox(placeholder="Insert a custom context...", interactive=True)
 
 
 
 
 
84
 
85
  @spaces.GPU()
86
- def generate(query, max_new_tokens, top_p, temperature, retrieve_k, top_k, rag_setting, custom_context, model_size, progress=gr.Progress()):
 
 
 
 
 
 
 
 
 
 
 
87
  global model, model_id
88
  if rag_setting == "Use Custom Context":
89
  docs = custom_context.split("\n\n")
@@ -105,11 +143,7 @@ def generate(query, max_new_tokens, top_p, temperature, retrieve_k, top_k, rag_s
105
  curr_model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct"
106
  if model is None or model.model_name != curr_model_id:
107
  progress(0.2, desc="Loading model...")
108
- model_id = curr_model_id
109
- hf_model = LlamaForCausalLM.from_pretrained(model_id)
110
- tokenizer = AutoTokenizer.from_pretrained(model_id)
111
- attnlrp.register(hf_model)
112
- model = load_model(hf_model, "saliency", tokenizer=tokenizer)
113
  progress(0.3, desc="Attributing with LXT...")
114
  lm_rag_prompting_example = AttributeContextArgs(
115
  model_name_or_path=model_id,
@@ -125,7 +159,11 @@ def generate(query, max_new_tokens, top_p, temperature, retrieve_k, top_k, rag_s
125
  context_sensitivity_std_threshold=1,
126
  decoder_input_output_separator=" ",
127
  special_tokens_to_keep=["<|im_start|>", "<|endoftext|>"],
128
- generation_kwargs={"max_new_tokens": max_new_tokens, "top_p": top_p, "temperature": temperature},
 
 
 
 
129
  attribution_aggregators=["sum"],
130
  rescale_attributions=True,
131
  save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
@@ -144,17 +182,21 @@ def generate(query, max_new_tokens, top_p, temperature, retrieve_k, top_k, rag_s
144
  label="πŸ” Download HTML",
145
  value=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
146
  visible=True,
147
- )
148
  ]
149
 
150
 
151
- register_step_function(lxt_contrast_prob_diff_fn, "lxt_contrast_prob_diff", overwrite=True)
 
 
152
 
153
 
154
  with gr.Blocks(css=custom_css) as demo:
155
  with gr.Row():
156
  with gr.Column(min_width=500):
157
- gr.HTML(f'<h1><img src="file/img/mirage_logo_white_contour.png" width=300px /></h1>')
 
 
158
  text = gr.Markdown(
159
  "This demo showcases an end-to-end usage of model internals for RAG answer attribution with the <a href='https://openreview.net/forum?id=XTHfNGI3zT' target='_blank'>PECoRe</a> framework, as described in our <a href='https://arxiv.org/abs/2406.13663' target='_blank'>MIRAGE</a> paper.<br>"
160
  "Insert a query to retrieve relevant contexts, generate an answer and attribute its context-sensitive components. An interactive <a href='https://github.com/google-deepmind/treescope' target='_blank'>Treescope</a> visualization will appear in the green square.<br>"
@@ -182,18 +224,36 @@ with gr.Blocks(css=custom_css) as demo:
182
  ["135M", "360M", "1.7B"],
183
  value="360M",
184
  label="Model size",
185
- interactive=True
186
  )
187
  with gr.Row():
188
  rag_setting = gr.Radio(
189
- ["Retrieve with BM25", "Rerank with ColBERT", "Use Custom Context"],
 
 
 
 
190
  value="Rerank with ColBERT",
191
  label="Mode",
192
- interactive=True
193
  )
194
  with gr.Row():
195
- retrieve_k = gr.Slider(1, 500, value=100, step=1, label="# Docs to Retrieve", interactive=True)
196
- top_k = gr.Slider(1, 10, value=3, step=1, label="# Docs in Context", interactive=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
  custom_context = gr.Textbox(
198
  placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.",
199
  label="Custom context",
@@ -201,18 +261,51 @@ with gr.Blocks(css=custom_css) as demo:
201
  lines=4,
202
  )
203
  with gr.Row():
204
- max_new_tokens = gr.Slider(0, 500, value=50, step=5.0, label="Max new tokens", interactive=True)
205
- top_p = gr.Slider(0, 1, value=1, step=0.01, label="Top P", interactive=True)
206
- temperature = gr.Slider(0, 1, value=0, step=0.01, label="Temperature", interactive=True)
 
 
 
 
 
 
 
 
 
 
 
207
  with gr.Accordion("πŸ“ Citation", open=False):
208
- gr.Markdown("Using PECoRe for model internals-based RAG answer attribution is discussed in:")
209
- gr.Code(mirage_citation, interactive=False, label="MIRAGE (Qi, Sarti et al., 2024)")
 
 
 
 
 
 
210
  gr.Markdown("To refer to the original PECoRe paper, cite:")
211
- gr.Code(pecore_citation, interactive=False, label="PECoRe (Sarti et al., 2024)")
212
- gr.Markdown("The Inseq implementation used in this work (<a href=\"https://inseq.org/en/latest/main_classes/cli.html#attribute-context\"><code>inseq attribute-context</code></a>, including this demo) can be cited with:")
213
- gr.Code(inseq_citation, interactive=False, label="Inseq (Sarti et al., 2023)")
214
- gr.Markdown("The AttnLRP attribution method used in this demo via the LXT library can be cited with:")
215
- gr.Code(lxt_citation, interactive=False, label="AttnLRP (Achtibat et al., 2024)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
  with gr.Column():
217
  attribute_context_out = gradio_iframe.iFrame(height=400, visible=True)
218
  with gr.Row(equal_height=True):
@@ -229,15 +322,23 @@ with gr.Blocks(css=custom_css) as demo:
229
  )
230
  with gr.Row(elem_classes="footer-container"):
231
  with gr.Column():
232
- gr.Markdown("""<div class="footer-custom-block"><b>Powered by</b> <a href='https://github.com/inseq-team/inseq' target='_blank'><img src="file/img/inseq_logo_white_contour.png" width=150px /></a> <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'><img src="file/img/lxt_logo.png" width=150px /></a></div>""")
 
 
233
  with gr.Column():
234
  with gr.Row(elem_classes="footer-custom-block"):
235
  with gr.Column(scale=0.30, min_width=150):
236
- gr.Markdown("""<b>Built by <a href="https://gsarti.com" target="_blank">Gabriele Sarti</a><br> with the support of</b>""")
 
 
237
  with gr.Column(scale=0.30, min_width=120):
238
- gr.Markdown("""<a href='https://www.rug.nl/research/clcg/research/cl/' target='_blank'><img src="file/img/rug_logo_white_contour.png" width=170px /></a>""")
 
 
239
  with gr.Column(scale=0.30, min_width=120):
240
- gr.Markdown("""<a href='https://projects.illc.uva.nl/indeep/' target='_blank'><img src="file/img/indeep_logo_white_contour.png" width=100px /></a>""")
 
 
241
 
242
  rag_setting.change(
243
  fn=set_interactive_settings,
@@ -262,7 +363,9 @@ with gr.Blocks(css=custom_css) as demo:
262
  attribute_context_out,
263
  download_output_file_button,
264
  download_output_html_button,
265
- ]
266
  )
267
 
268
- demo.queue(api_open=False, max_size=20).launch(allowed_paths=["img/", "outputs/"], show_api=False)
 
 
 
 
1
  import os
2
+ import re
3
+
4
  import bm25s
 
5
  import gradio as gr
6
  import gradio_iframe
7
+ import spaces
8
  from bm25s.hf import BM25HF
9
+ from citations import inseq_citation, lxt_citation, mirage_citation, pecore_citation
10
+ from examples import examples
11
+ from lxt.functional import add2, mul2, softmax
12
+ from lxt.models.llama import LlamaForCausalLM, attnlrp
13
  from rerankers import Reranker
14
+ from style import custom_css
15
+ from transformers import AutoTokenizer
16
 
17
+ from inseq import load_model, register_step_function
18
  from inseq.attr import StepFunctionArgs
19
  from inseq.commands.attribute_context import visualize_attribute_context
20
+ from inseq.commands.attribute_context.attribute_context import (
21
+ AttributeContextArgs,
22
+ attribute_context_with_model,
23
+ )
24
  from inseq.utils.contrast_utils import _setup_contrast_args
 
 
 
 
 
 
 
 
25
 
26
+ model = None
27
  model_id = "HuggingFaceTB/SmolLM-360M-Instruct"
28
+ ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type="colbert")
29
  retriever = BM25HF.load_from_hub("xhluca/bm25s-nq-index", load_corpus=True, mmap=True)
30
+
31
+ # Model registry to store loaded models
32
+ model_registry = {}
33
+
34
+
35
+ def get_model(model_size):
36
+ model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct"
37
+ if model_id not in model_registry:
38
+ hf_model = LlamaForCausalLM.from_pretrained(model_id)
39
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
40
+ attnlrp.register(hf_model)
41
+ model = load_model(hf_model, "saliency", tokenizer=tokenizer)
42
+ model.bos_token = "<|endoftext|>"
43
+ model.bos_token_id = 0
44
+ model_registry[model_id] = model
45
+ return model_registry[model_id]
46
 
47
 
48
  def lxt_probability_fn(args: StepFunctionArgs):
 
51
  logits = softmax(logits, dim=-1)
52
  return logits.gather(-1, target_ids).squeeze(-1)
53
 
54
+
55
  def lxt_contrast_prob_fn(
56
  args: StepFunctionArgs,
57
+ contrast_sources=None,
58
+ contrast_targets=None,
59
  contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
60
  contrast_force_inputs: bool = False,
61
  skip_special_tokens: bool = False,
 
70
  )
71
  return lxt_probability_fn(c_args)
72
 
73
+
74
  def lxt_contrast_prob_diff_fn(
75
  args: StepFunctionArgs,
76
+ contrast_sources=None,
77
+ contrast_targets=None,
78
  contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
79
  contrast_force_inputs: bool = False,
80
  skip_special_tokens: bool = False,
 
93
 
94
  def set_interactive_settings(rag_setting, retrieve_k, top_k, custom_context):
95
  if rag_setting in ("Retrieve with BM25", "Rerank with ColBERT"):
96
+ return (
97
+ gr.Slider(interactive=True),
98
+ gr.Slider(interactive=True),
99
+ gr.Textbox(
100
+ placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.",
101
+ interactive=False,
102
+ ),
103
+ )
104
  elif rag_setting == "Use Custom Context":
105
+ return (
106
+ gr.Slider(interactive=False),
107
+ gr.Slider(interactive=False),
108
+ gr.Textbox(placeholder="Insert a custom context...", interactive=True),
109
+ )
110
+
111
 
112
  @spaces.GPU()
113
+ def generate(
114
+ query,
115
+ max_new_tokens,
116
+ top_p,
117
+ temperature,
118
+ retrieve_k,
119
+ top_k,
120
+ rag_setting,
121
+ custom_context,
122
+ model_size,
123
+ progress=gr.Progress(),
124
+ ):
125
  global model, model_id
126
  if rag_setting == "Use Custom Context":
127
  docs = custom_context.split("\n\n")
 
143
  curr_model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct"
144
  if model is None or model.model_name != curr_model_id:
145
  progress(0.2, desc="Loading model...")
146
+ model = get_model(model_size)
 
 
 
 
147
  progress(0.3, desc="Attributing with LXT...")
148
  lm_rag_prompting_example = AttributeContextArgs(
149
  model_name_or_path=model_id,
 
159
  context_sensitivity_std_threshold=1,
160
  decoder_input_output_separator=" ",
161
  special_tokens_to_keep=["<|im_start|>", "<|endoftext|>"],
162
+ generation_kwargs={
163
+ "max_new_tokens": max_new_tokens,
164
+ "top_p": top_p,
165
+ "temperature": temperature,
166
+ },
167
  attribution_aggregators=["sum"],
168
  rescale_attributions=True,
169
  save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
 
182
  label="πŸ” Download HTML",
183
  value=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
184
  visible=True,
185
+ ),
186
  ]
187
 
188
 
189
+ register_step_function(
190
+ lxt_contrast_prob_diff_fn, "lxt_contrast_prob_diff", overwrite=True
191
+ )
192
 
193
 
194
  with gr.Blocks(css=custom_css) as demo:
195
  with gr.Row():
196
  with gr.Column(min_width=500):
197
+ gr.HTML(
198
+ '<h1><img src="file/img/mirage_logo_white_contour.png" width=300px /></h1>'
199
+ )
200
  text = gr.Markdown(
201
  "This demo showcases an end-to-end usage of model internals for RAG answer attribution with the <a href='https://openreview.net/forum?id=XTHfNGI3zT' target='_blank'>PECoRe</a> framework, as described in our <a href='https://arxiv.org/abs/2406.13663' target='_blank'>MIRAGE</a> paper.<br>"
202
  "Insert a query to retrieve relevant contexts, generate an answer and attribute its context-sensitive components. An interactive <a href='https://github.com/google-deepmind/treescope' target='_blank'>Treescope</a> visualization will appear in the green square.<br>"
 
224
  ["135M", "360M", "1.7B"],
225
  value="360M",
226
  label="Model size",
227
+ interactive=True,
228
  )
229
  with gr.Row():
230
  rag_setting = gr.Radio(
231
+ [
232
+ "Retrieve with BM25",
233
+ "Rerank with ColBERT",
234
+ "Use Custom Context",
235
+ ],
236
  value="Rerank with ColBERT",
237
  label="Mode",
238
+ interactive=True,
239
  )
240
  with gr.Row():
241
+ retrieve_k = gr.Slider(
242
+ 1,
243
+ 500,
244
+ value=100,
245
+ step=1,
246
+ label="# Docs to Retrieve",
247
+ interactive=True,
248
+ )
249
+ top_k = gr.Slider(
250
+ 1,
251
+ 10,
252
+ value=3,
253
+ step=1,
254
+ label="# Docs in Context",
255
+ interactive=True,
256
+ )
257
  custom_context = gr.Textbox(
258
  placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.",
259
  label="Custom context",
 
261
  lines=4,
262
  )
263
  with gr.Row():
264
+ max_new_tokens = gr.Slider(
265
+ 0,
266
+ 500,
267
+ value=50,
268
+ step=5.0,
269
+ label="Max new tokens",
270
+ interactive=True,
271
+ )
272
+ top_p = gr.Slider(
273
+ 0, 1, value=1, step=0.01, label="Top P", interactive=True
274
+ )
275
+ temperature = gr.Slider(
276
+ 0, 1, value=0, step=0.01, label="Temperature", interactive=True
277
+ )
278
  with gr.Accordion("πŸ“ Citation", open=False):
279
+ gr.Markdown(
280
+ "Using PECoRe for model internals-based RAG answer attribution is discussed in:"
281
+ )
282
+ gr.Code(
283
+ mirage_citation,
284
+ interactive=False,
285
+ label="MIRAGE (Qi, Sarti et al., 2024)",
286
+ )
287
  gr.Markdown("To refer to the original PECoRe paper, cite:")
288
+ gr.Code(
289
+ pecore_citation,
290
+ interactive=False,
291
+ label="PECoRe (Sarti et al., 2024)",
292
+ )
293
+ gr.Markdown(
294
+ 'The Inseq implementation used in this work (<a href="https://inseq.org/en/latest/main_classes/cli.html#attribute-context"><code>inseq attribute-context</code></a>, including this demo) can be cited with:'
295
+ )
296
+ gr.Code(
297
+ inseq_citation,
298
+ interactive=False,
299
+ label="Inseq (Sarti et al., 2023)",
300
+ )
301
+ gr.Markdown(
302
+ "The AttnLRP attribution method used in this demo via the LXT library can be cited with:"
303
+ )
304
+ gr.Code(
305
+ lxt_citation,
306
+ interactive=False,
307
+ label="AttnLRP (Achtibat et al., 2024)",
308
+ )
309
  with gr.Column():
310
  attribute_context_out = gradio_iframe.iFrame(height=400, visible=True)
311
  with gr.Row(equal_height=True):
 
322
  )
323
  with gr.Row(elem_classes="footer-container"):
324
  with gr.Column():
325
+ gr.Markdown(
326
+ """<div class="footer-custom-block"><b>Powered by</b> <a href='https://github.com/inseq-team/inseq' target='_blank'><img src="file/img/inseq_logo_white_contour.png" width=150px /></a> <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'><img src="file/img/lxt_logo.png" width=150px /></a></div>"""
327
+ )
328
  with gr.Column():
329
  with gr.Row(elem_classes="footer-custom-block"):
330
  with gr.Column(scale=0.30, min_width=150):
331
+ gr.Markdown(
332
+ """<b>Built by <a href="https://gsarti.com" target="_blank">Gabriele Sarti</a><br> with the support of</b>"""
333
+ )
334
  with gr.Column(scale=0.30, min_width=120):
335
+ gr.Markdown(
336
+ """<a href='https://www.rug.nl/research/clcg/research/cl/' target='_blank'><img src="file/img/rug_logo_white_contour.png" width=170px /></a>"""
337
+ )
338
  with gr.Column(scale=0.30, min_width=120):
339
+ gr.Markdown(
340
+ """<a href='https://projects.illc.uva.nl/indeep/' target='_blank'><img src="file/img/indeep_logo_white_contour.png" width=100px /></a>"""
341
+ )
342
 
343
  rag_setting.change(
344
  fn=set_interactive_settings,
 
363
  attribute_context_out,
364
  download_output_file_button,
365
  download_output_html_button,
366
+ ],
367
  )
368
 
369
+ demo.queue(api_open=False, max_size=20).launch(
370
+ allowed_paths=["img/", "outputs/"], show_api=False
371
+ )