Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from PIL import Image | |
| import os | |
| from src.flux.xflux_pipeline import XFluxPipeline | |
| import random | |
| import spaces | |
| def run_xflux_pipeline( | |
| prompt, image, repo_id, name, device, | |
| model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance, | |
| neg_prompt="", | |
| negative_image=None, | |
| save_path='results', control_type='depth', use_controlnet=False, seed=None, num_images_per_prompt=1, use_lora=False, lora_weight=0.7, lora_repo_id="XLabs-AI/flux-lora-collection", lora_name="realism_lora.safetensors", use_ip=False | |
| ): | |
| # Montando os argumentos simulando a linha de comando | |
| class Args: | |
| def __init__(self): | |
| self.prompt = prompt | |
| self.image = image | |
| self.control_type = control_type | |
| self.repo_id = repo_id | |
| self.name = name | |
| self.device = device | |
| self.use_controlnet = use_controlnet | |
| self.model_type = model_type | |
| self.width = width | |
| self.height = height | |
| self.timestep_to_start_cfg = timestep_to_start_cfg | |
| self.num_steps = num_steps | |
| self.true_gs = true_gs | |
| self.guidance = guidance | |
| self.num_images_per_prompt = num_images_per_prompt | |
| self.seed = seed if seed else 123456789 | |
| self.neg_prompt = neg_prompt | |
| self.img_prompt = Image.open(image) | |
| self.neg_img_prompt = Image.open(negative_image) if negative_image else None | |
| self.ip_scale = 1.0 | |
| self.neg_ip_scale = 1.0 | |
| self.local_path = None | |
| self.ip_repo_id = "XLabs-AI/flux-ip-adapter" | |
| self.ip_name = "flux-ip-adapter.safetensors" | |
| self.ip_local_path = None | |
| self.lora_repo_id = lora_repo_id | |
| self.lora_name = lora_name | |
| self.lora_local_path = None | |
| self.offload = False | |
| self.use_ip = use_ip | |
| self.use_lora = use_lora | |
| self.lora_weight = lora_weight | |
| self.save_path = save_path | |
| args = Args() | |
| # Carregar a imagem se fornecida | |
| if args.image: | |
| image = Image.open(args.image) | |
| else: | |
| image = None | |
| # Inicializar o pipeline com os parâmetros necessários | |
| xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload) | |
| # Configurar ControlNet se necessário | |
| if args.use_controlnet: | |
| print('Loading ControlNet:', args.local_path, args.repo_id, args.name) | |
| xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name) | |
| if args.use_ip: | |
| print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name) | |
| xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name) | |
| if args.use_lora: | |
| print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name) | |
| xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight) | |
| # Laço para gerar imagens | |
| images = [] | |
| for _ in range(args.num_images_per_prompt): | |
| seed = random.randint(0, 2147483647) | |
| result = xflux_pipeline( | |
| prompt=args.prompt, | |
| controlnet_image=image, | |
| width=args.width, | |
| height=args.height, | |
| guidance=args.guidance, | |
| num_steps=args.num_steps, | |
| seed=seed, | |
| true_gs=args.true_gs, | |
| neg_prompt=args.neg_prompt, | |
| timestep_to_start_cfg=args.timestep_to_start_cfg, | |
| image_prompt=args.img_prompt, | |
| neg_image_prompt=args.neg_img_prompt, | |
| ip_scale=args.ip_scale, | |
| neg_ip_scale=args.neg_ip_scale, | |
| ) | |
| images.append(result) | |
| return images | |
| def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg): | |
| return run_xflux_pipeline( | |
| prompt=prompt, | |
| neg_prompt=neg_prompt, | |
| image=image, | |
| negative_image=negative_image, | |
| lora_name=lora_name, | |
| lora_weight=lora_weight, | |
| lora_repo_id=lora_path, | |
| control_type="depth" if use_depth else "hed" if use_hed else "canny", | |
| repo_id="XLabs-AI/flux-controlnet-collections", | |
| name="flux-depth-controlnet.safetensors", | |
| device="cuda", | |
| use_controlnet=use_controlnet, | |
| model_type="flux-dev", | |
| width=1024, | |
| height=1024, | |
| timestep_to_start_cfg=cfg, | |
| num_steps=steps, | |
| num_images_per_prompt=4, | |
| use_lora=use_lora, | |
| true_gs=true_gs, | |
| use_ip=use_ip, | |
| guidance=guidance | |
| ) | |
| custom_css = """ | |
| body { | |
| background: rgb(24, 24, 27); | |
| } | |
| .gradio-container { | |
| background: rgb(24, 24, 27); | |
| } | |
| .app-container { | |
| background: rgb(24, 24, 27); | |
| } | |
| gradio-app { | |
| background: rgb(24, 24, 27); | |
| } | |
| .sidebar { | |
| background: rgb(31, 31, 35); | |
| border-right: 1px solid rgb(41, 41, 41); | |
| } | |
| """ | |
| with gr.Blocks(css=custom_css) as demo: | |
| with gr.Row(elem_classes="app-container"): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Image", type="filepath") | |
| negative_image = gr.Image(label="Negative_image", type="filepath") | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt") | |
| neg_prompt = gr.Textbox(label="Neg Prompt") | |
| steps = gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps") | |
| use_lora = gr.Checkbox(label="Use LORA", value=True) | |
| lora_path = gr.Textbox(label="LoraPath", value="XLabs-AI/flux-lora-collection") | |
| lora_name = gr.Textbox(label="LoraName", value="realism_lora.safetensors") | |
| lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight") | |
| controlnet = gr.Checkbox(label="Use Controlnet(by default uses canny)", value=True) | |
| use_ip = gr.Checkbox(label="Use IP") | |
| use_depth = gr.Checkbox(label="Use depth") | |
| use_hed = gr.Checkbox(label="Use hed") | |
| true_gs = gr.Slider(step=0.1, minimum=0, maximum=10, value=3.5, label="TrueGs") | |
| guidance = gr.Slider(minimum=1, maximum=10, value=4, label="Guidance") | |
| cfg = gr.Slider(minimum=1, maximum=10, value=1, label="CFG") | |
| with gr.Column(): | |
| output = gr.Gallery(label="Galery output", elem_classes="galery", selected_index=0) | |
| submit_btn.click(process_image, inputs=[input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output) | |
| demo.launch(share=True) |