Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# 选择 DeepSeek 数学推理模型
|
6 |
+
MODEL_NAME = "deepseek-ai/deepseek-math-7b-instruct"
|
7 |
+
|
8 |
+
# 加载 Tokenizer 和 Model
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
MODEL_NAME,
|
12 |
+
torch_dtype=torch.float16, # 低精度加速推理
|
13 |
+
device_map="auto" # 自动分配 GPU / CPU
|
14 |
+
)
|
15 |
+
|
16 |
+
# 生成数学解答
|
17 |
+
def solve_math_problem(problem):
|
18 |
+
prompt = f"请解答以下数学题,并给出详细步骤:\n{problem}\n答案:"
|
19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model.generate(**inputs, max_new_tokens=256) # 限制输出长度
|
23 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
|
25 |
+
# 只提取模型生成的解答部分(去掉 prompt)
|
26 |
+
return answer.split("答案:")[-1].strip()
|
27 |
+
|
28 |
+
# Gradio 界面
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=solve_math_problem,
|
31 |
+
inputs="text",
|
32 |
+
outputs="text",
|
33 |
+
title="初中数学解题 AI",
|
34 |
+
description="输入数学题目,AI 将给出详细的解答步骤。",
|
35 |
+
examples=[
|
36 |
+
["解一元二次方程 x² - 5x + 6 = 0"],
|
37 |
+
["计算 3/4 + 5/6 的值"],
|
38 |
+
["求直角三角形,已知两边分别为 3 和 4,求斜边长度"]
|
39 |
+
]
|
40 |
+
)
|
41 |
+
|
42 |
+
iface.launch()
|