hackergeek commited on
Commit
7ac1ec8
·
verified ·
1 Parent(s): 81619a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -33
app.py CHANGED
@@ -8,7 +8,7 @@ from sentence_transformers import SentenceTransformer
8
  from inspect import signature
9
 
10
  # =====================================================
11
- # OPTION A: Use ephemeral /tmp cache to avoid 50 GB quota
12
  # =====================================================
13
  os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
14
  os.environ["HF_HOME"] = "/tmp/hf_home"
@@ -18,54 +18,64 @@ os.environ["HF_MODULES_CACHE"] = "/tmp/hf_modules"
18
  # =====================================================
19
  # 1️⃣ Model setup
20
  # =====================================================
21
- GEN_MODEL = "hackergeek/qwen3-harrison-rag" # private model
 
22
  EMB_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
23
 
24
- # --- Handle HF authentication ---
25
  HF_TOKEN = os.getenv("HF_TOKEN")
26
-
27
  if not HF_TOKEN:
28
- print("⚠️ No Hugging Face token found. If the model is private, set HF_TOKEN in your environment.")
29
- print(" Example: export HF_TOKEN=hf_yourtoken123 or add it in Hugging Face Space secrets.")
30
- else:
31
- print("✅ Hugging Face token detected.")
32
 
33
- # --- Load model/tokenizer safely ---
34
  try:
35
- param_names = signature(AutoModelForCausalLM.from_pretrained).parameters
36
- dtype_arg = "dtype" if "dtype" in param_names else "torch_dtype"
 
 
 
 
 
 
37
  dtype_value = torch.float16 if torch.cuda.is_available() else torch.float32
 
 
 
 
 
 
 
 
 
38
 
39
- load_kwargs = {
40
- dtype_arg: dtype_value,
41
- "cache_dir": "/tmp/hf_cache",
42
- "device_map": "auto",
43
- "low_cpu_mem_usage": True,
44
- "token": HF_TOKEN,
45
- }
46
 
47
- tokenizer = AutoTokenizer.from_pretrained(GEN_MODEL, token=HF_TOKEN)
48
- model = AutoModelForCausalLM.from_pretrained(GEN_MODEL, **load_kwargs)
49
 
 
 
 
 
 
 
 
 
 
 
50
  except Exception as e:
51
- print(f"❌ Failed to load model '{GEN_MODEL}'. Reason: {e}")
52
- print("➡️ Falling back to a public model: Qwen/Qwen2.5-1.5B-Instruct")
53
- GEN_MODEL = "Qwen/Qwen2.5-1.5B-Instruct"
54
- tokenizer = AutoTokenizer.from_pretrained(GEN_MODEL)
55
- model = AutoModelForCausalLM.from_pretrained(
56
- GEN_MODEL,
57
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
58
- device_map="auto",
59
- low_cpu_mem_usage=True,
60
- )
61
 
 
62
  embedder = SentenceTransformer(EMB_MODEL, cache_folder="/tmp/hf_cache")
63
 
64
  # =====================================================
65
  # 2️⃣ Retrieval + generation logic
66
  # =====================================================
67
- # Placeholder FAISS index and chunks (replace with your actual docs)
68
- index = faiss.IndexFlatL2(384) # all-MiniLM-L6-v2 output dimension
69
  chunks = ["This is a sample context chunk. Replace with real documents."]
70
 
71
  def retrieve_context(query, k=5):
@@ -108,7 +118,7 @@ with gr.Blocks(title="Qwen3-Harrison-RAG Chatbot") as demo:
108
  clear.click(lambda: None, None, chatbot, queue=False)
109
 
110
  # =====================================================
111
- # 4️⃣ Launch for Hugging Face Spaces
112
  # =====================================================
113
  if __name__ == "__main__":
114
  demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
 
8
  from inspect import signature
9
 
10
  # =====================================================
11
+ # OPTION: Use ephemeral /tmp cache
12
  # =====================================================
13
  os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
14
  os.environ["HF_HOME"] = "/tmp/hf_home"
 
18
  # =====================================================
19
  # 1️⃣ Model setup
20
  # =====================================================
21
+ GEN_MODEL_PRIVATE = "hackergeek/qwen3-harrison-rag"
22
+ GEN_MODEL_PUBLIC = "Qwen/Qwen2.5-1.5B-Instruct"
23
  EMB_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
24
 
 
25
  HF_TOKEN = os.getenv("HF_TOKEN")
 
26
  if not HF_TOKEN:
27
+ print("⚠️ No Hugging Face token found. Private models may fail to load.")
 
 
 
28
 
29
+ # --- Check if accelerate is available ---
30
  try:
31
+ import accelerate
32
+ accelerate_available = True
33
+ except ImportError:
34
+ accelerate_available = False
35
+ print("⚠️ `accelerate` not installed. Large private models with device_map='auto' may fail.")
36
+
37
+ # --- Helper to load model safely ---
38
+ def load_model(model_name, token=None):
39
  dtype_value = torch.float16 if torch.cuda.is_available() else torch.float32
40
+ try:
41
+ param_names = signature(AutoModelForCausalLM.from_pretrained).parameters
42
+ dtype_arg = "dtype" if "dtype" in param_names else "torch_dtype"
43
+
44
+ load_kwargs = {
45
+ dtype_arg: dtype_value,
46
+ "cache_dir": "/tmp/hf_cache",
47
+ "low_cpu_mem_usage": True,
48
+ }
49
 
50
+ if accelerate_available:
51
+ load_kwargs["device_map"] = "auto"
 
 
 
 
 
52
 
53
+ if token:
54
+ load_kwargs["token"] = token
55
 
56
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
57
+ model = AutoModelForCausalLM.from_pretrained(model_name, **load_kwargs)
58
+ return tokenizer, model
59
+ except Exception as e:
60
+ raise RuntimeError(f"Failed to load model '{model_name}': {e}")
61
+
62
+ # --- Attempt to load private model, fallback to public ---
63
+ try:
64
+ tokenizer, model = load_model(GEN_MODEL_PRIVATE, token=HF_TOKEN)
65
+ print(f"✅ Loaded private model: {GEN_MODEL_PRIVATE}")
66
  except Exception as e:
67
+ print(f"❌ {e}\n➡️ Falling back to public model: {GEN_MODEL_PUBLIC}")
68
+ tokenizer, model = load_model(GEN_MODEL_PUBLIC)
69
+ print(f"✅ Loaded public model: {GEN_MODEL_PUBLIC}")
 
 
 
 
 
 
 
70
 
71
+ # --- Load embedding model ---
72
  embedder = SentenceTransformer(EMB_MODEL, cache_folder="/tmp/hf_cache")
73
 
74
  # =====================================================
75
  # 2️⃣ Retrieval + generation logic
76
  # =====================================================
77
+ # Placeholder FAISS index and chunks (replace with your actual documents)
78
+ index = faiss.IndexFlatL2(384)
79
  chunks = ["This is a sample context chunk. Replace with real documents."]
80
 
81
  def retrieve_context(query, k=5):
 
118
  clear.click(lambda: None, None, chatbot, queue=False)
119
 
120
  # =====================================================
121
+ # 4️⃣ Launch
122
  # =====================================================
123
  if __name__ == "__main__":
124
  demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))