Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
-
import faiss
|
| 5 |
-
import numpy as np
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
-
from sentence_transformers import SentenceTransformer
|
| 8 |
-
from inspect import signature
|
| 9 |
|
| 10 |
# =====================================================
|
| 11 |
-
#
|
| 12 |
# =====================================================
|
| 13 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 14 |
os.environ["HF_HOME"] = "/tmp/hf_home"
|
|
@@ -16,174 +12,108 @@ os.environ["HF_DATASETS_CACHE"] = "/tmp/hf_datasets"
|
|
| 16 |
os.environ["HF_MODULES_CACHE"] = "/tmp/hf_modules"
|
| 17 |
|
| 18 |
# =====================================================
|
| 19 |
-
# Model
|
| 20 |
# =====================================================
|
| 21 |
-
|
| 22 |
-
GEN_MODEL_PUBLIC = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 23 |
-
EMB_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 24 |
-
|
| 25 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 26 |
-
if not HF_TOKEN:
|
| 27 |
-
print("⚠️ No Hugging Face token found. Private models may fail to load.")
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
except ImportError:
|
| 33 |
-
accelerate_available = False
|
| 34 |
-
print("⚠️ `accelerate` not installed. Large private models with device_map='auto' may fail.")
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
dtype_value = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
try:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
dtype_arg: dtype_value,
|
| 45 |
-
"cache_dir": "/tmp/hf_cache",
|
| 46 |
-
"low_cpu_mem_usage": True,
|
| 47 |
-
}
|
| 48 |
-
if accelerate_available:
|
| 49 |
-
load_kwargs["device_map"] = "auto"
|
| 50 |
-
if token:
|
| 51 |
-
load_kwargs["token"] = token
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
except Exception as e:
|
| 57 |
-
raise RuntimeError(f"Failed to load model '{model_name}': {e}")
|
| 58 |
|
| 59 |
-
# --- Attempt private model, fallback to public ---
|
| 60 |
try:
|
| 61 |
-
tokenizer, model =
|
| 62 |
-
print(f"✅ Loaded private model: {
|
| 63 |
except Exception as e:
|
| 64 |
-
|
| 65 |
-
tokenizer, model = load_model(GEN_MODEL_PUBLIC)
|
| 66 |
-
print(f"✅ Loaded public model: {GEN_MODEL_PUBLIC}")
|
| 67 |
-
|
| 68 |
-
# --- Load embedding model ---
|
| 69 |
-
embedder = SentenceTransformer(EMB_MODEL, cache_folder="/tmp/hf_cache")
|
| 70 |
-
|
| 71 |
-
# =====================================================
|
| 72 |
-
# FAISS index setup
|
| 73 |
-
# =====================================================
|
| 74 |
-
# Example medical text; replace with full dataset
|
| 75 |
-
documents = [
|
| 76 |
-
"Infliximab is a humanized monoclonal antibody used in rheumatoid arthritis. "
|
| 77 |
-
"It is administered intravenously at 3–5 mg/kg every 6–8 weeks.",
|
| 78 |
-
"Colitis ulcerum is a chronic inflammatory disorder of the colon characterized by ulcerated erosions.",
|
| 79 |
-
"COPD is a chronic obstructive pulmonary disease with progressive airflow limitation."
|
| 80 |
-
]
|
| 81 |
-
|
| 82 |
-
# Function to split documents into chunks
|
| 83 |
-
def chunk_text(text, chunk_size=150):
|
| 84 |
-
words = text.split()
|
| 85 |
-
chunks = []
|
| 86 |
-
for i in range(0, len(words), chunk_size):
|
| 87 |
-
chunk = " ".join(words[i:i+chunk_size])
|
| 88 |
-
chunks.append(chunk)
|
| 89 |
-
return chunks
|
| 90 |
-
|
| 91 |
-
# Create all chunks and embeddings
|
| 92 |
-
chunks = []
|
| 93 |
-
for doc in documents:
|
| 94 |
-
chunks.extend(chunk_text(doc))
|
| 95 |
-
|
| 96 |
-
chunk_embeddings = embedder.encode(chunks, convert_to_numpy=True)
|
| 97 |
-
index = faiss.IndexFlatL2(chunk_embeddings.shape[1])
|
| 98 |
-
index.add(np.array(chunk_embeddings))
|
| 99 |
|
| 100 |
# =====================================================
|
| 101 |
-
#
|
| 102 |
# =====================================================
|
| 103 |
-
def
|
| 104 |
-
|
| 105 |
-
if index.ntotal == 0:
|
| 106 |
-
return "No context available."
|
| 107 |
-
D, I = index.search(q_emb, max_k)
|
| 108 |
-
sorted_idx = [i for _, i in sorted(zip(D[0], I[0]))] # deterministic
|
| 109 |
-
context = []
|
| 110 |
-
total_tokens = 0
|
| 111 |
-
for idx in sorted_idx:
|
| 112 |
-
if D[0][list(sorted_idx).index(idx)] > distance_threshold:
|
| 113 |
-
continue
|
| 114 |
-
chunk_tokens = len(tokenizer(chunks[idx])["input_ids"])
|
| 115 |
-
if total_tokens + chunk_tokens > max_tokens:
|
| 116 |
-
break
|
| 117 |
-
context.append(chunks[idx])
|
| 118 |
-
total_tokens += chunk_tokens
|
| 119 |
-
return "\n\n".join(context) if context else "No context available."
|
| 120 |
-
|
| 121 |
-
def calculate_max_tokens(query, min_tokens=50, max_tokens=800, factor=3):
|
| 122 |
query_tokens = len(tokenizer(query)["input_ids"])
|
| 123 |
dynamic_tokens = query_tokens * factor
|
| 124 |
return min(max(dynamic_tokens, min_tokens), max_tokens)
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
do_sample=False,
|
| 149 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 150 |
-
no_repeat_ngram_size=4
|
| 151 |
-
)
|
| 152 |
-
partial_answer = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 153 |
-
partial_answer = partial_answer.split("Assistant:")[-1].strip()
|
| 154 |
-
|
| 155 |
-
new_content = partial_answer[len(full_response):].strip()
|
| 156 |
-
if not new_content:
|
| 157 |
-
break
|
| 158 |
-
|
| 159 |
-
full_response += new_content
|
| 160 |
-
|
| 161 |
-
if full_response.endswith(('.', '!', '?')):
|
| 162 |
-
break
|
| 163 |
-
|
| 164 |
-
remaining_prompt = full_response
|
| 165 |
-
loop_count += 1
|
| 166 |
-
|
| 167 |
-
return full_response
|
| 168 |
|
| 169 |
-
|
| 170 |
-
response = generate_full_answer(user_message, history)
|
| 171 |
-
history = history + [(user_message, response)]
|
| 172 |
return history, history
|
| 173 |
|
| 174 |
# =====================================================
|
| 175 |
-
# Gradio
|
| 176 |
# =====================================================
|
| 177 |
with gr.Blocks(title="Qwen3-Harrison-RAG Chatbot") as demo:
|
| 178 |
gr.Markdown("""
|
| 179 |
-
# 🤖 Qwen3-Harrison-RAG Chatbot
|
| 180 |
-
Ask me anything — I’ll retrieve
|
| 181 |
""")
|
| 182 |
-
chatbot = gr.Chatbot(height=
|
| 183 |
with gr.Row():
|
| 184 |
-
msg = gr.Textbox(placeholder="
|
| 185 |
clear = gr.Button("Clear", scale=1)
|
| 186 |
-
msg.submit(
|
| 187 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 188 |
|
| 189 |
# =====================================================
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# =====================================================
|
| 7 |
+
# Environment setup
|
| 8 |
# =====================================================
|
| 9 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 10 |
os.environ["HF_HOME"] = "/tmp/hf_home"
|
|
|
|
| 12 |
os.environ["HF_MODULES_CACHE"] = "/tmp/hf_modules"
|
| 13 |
|
| 14 |
# =====================================================
|
| 15 |
+
# Model configuration
|
| 16 |
# =====================================================
|
| 17 |
+
GEN_MODEL = "hackergeek/qwen3-harrison-rag"
|
|
|
|
|
|
|
|
|
|
| 18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
if not HF_TOKEN:
|
| 21 |
+
print("⚠️ No Hugging Face token found. Set one using:")
|
| 22 |
+
print(" export HF_TOKEN='your_hf_token_here'")
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# =====================================================
|
| 25 |
+
# Load private RAG model
|
| 26 |
+
# =====================================================
|
| 27 |
+
def load_private_model(model_name, token):
|
| 28 |
dtype_value = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 29 |
+
load_kwargs = {
|
| 30 |
+
"dtype": dtype_value,
|
| 31 |
+
"cache_dir": "/tmp/hf_cache",
|
| 32 |
+
"low_cpu_mem_usage": True,
|
| 33 |
+
}
|
| 34 |
try:
|
| 35 |
+
import accelerate
|
| 36 |
+
load_kwargs["device_map"] = "auto"
|
| 37 |
+
except ImportError:
|
| 38 |
+
print("⚠️ `accelerate` not installed — using default device placement.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
| 41 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=token, **load_kwargs)
|
| 42 |
+
return tokenizer, model
|
|
|
|
|
|
|
| 43 |
|
|
|
|
| 44 |
try:
|
| 45 |
+
tokenizer, model = load_private_model(GEN_MODEL, token=HF_TOKEN)
|
| 46 |
+
print(f"✅ Loaded private RAG model: {GEN_MODEL}")
|
| 47 |
except Exception as e:
|
| 48 |
+
raise RuntimeError(f"❌ Failed to load {GEN_MODEL}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# =====================================================
|
| 51 |
+
# Dynamic token allocation
|
| 52 |
# =====================================================
|
| 53 |
+
def calculate_max_tokens(query, min_tokens=100, max_tokens=600, factor=3):
|
| 54 |
+
"""Dynamically scale output length to input length."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
query_tokens = len(tokenizer(query)["input_ids"])
|
| 56 |
dynamic_tokens = query_tokens * factor
|
| 57 |
return min(max(dynamic_tokens, min_tokens), max_tokens)
|
| 58 |
|
| 59 |
+
# =====================================================
|
| 60 |
+
# RAG-aware generation logic
|
| 61 |
+
# =====================================================
|
| 62 |
+
def generate_answer(query, history):
|
| 63 |
+
if not query.strip():
|
| 64 |
+
return history, history
|
| 65 |
+
|
| 66 |
+
# Step 1️⃣: Rephrase user query for optimal retrieval
|
| 67 |
+
rephrase_prompt = (
|
| 68 |
+
"You are a retrieval-augmented assistant.\n"
|
| 69 |
+
"Rephrase the following user query to maximize retrieval accuracy "
|
| 70 |
+
"by keeping key entities and medical terms intact:\n\n"
|
| 71 |
+
f"User query: {query}\n\n"
|
| 72 |
+
"Rephrased query:"
|
| 73 |
+
)
|
| 74 |
+
inputs = tokenizer(rephrase_prompt, return_tensors="pt").to(model.device)
|
| 75 |
+
rephrased_ids = model.generate(**inputs, max_new_tokens=80, do_sample=False)
|
| 76 |
+
rephrased_query = tokenizer.decode(rephrased_ids[0], skip_special_tokens=True).split("Rephrased query:")[-1].strip()
|
| 77 |
+
|
| 78 |
+
# Step 2️⃣: Main retrieval + generation
|
| 79 |
+
max_tokens = calculate_max_tokens(rephrased_query)
|
| 80 |
+
system_prompt = (
|
| 81 |
+
"You are a retrieval-augmented medical assistant. "
|
| 82 |
+
"You have access to internal knowledge and context retrieval. "
|
| 83 |
+
"Always provide clear, complete, and factual medical explanations.\n\n"
|
| 84 |
+
f"Optimized query for retrieval:\n{rephrased_query}\n\n"
|
| 85 |
+
"Answer using relevant retrieved context and your reasoning.\n\n"
|
| 86 |
+
"Assistant:"
|
| 87 |
)
|
| 88 |
|
| 89 |
+
inputs = tokenizer(system_prompt, return_tensors="pt").to(model.device)
|
| 90 |
+
output_ids = model.generate(
|
| 91 |
+
**inputs,
|
| 92 |
+
max_new_tokens=max_tokens,
|
| 93 |
+
do_sample=False,
|
| 94 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 95 |
+
no_repeat_ngram_size=4,
|
| 96 |
+
temperature=0.0, # completely deterministic
|
| 97 |
+
)
|
| 98 |
+
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 99 |
+
answer = output.split("Assistant:")[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
history = history + [(query, answer)]
|
|
|
|
|
|
|
| 102 |
return history, history
|
| 103 |
|
| 104 |
# =====================================================
|
| 105 |
+
# Gradio interface
|
| 106 |
# =====================================================
|
| 107 |
with gr.Blocks(title="Qwen3-Harrison-RAG Chatbot") as demo:
|
| 108 |
gr.Markdown("""
|
| 109 |
+
# 🤖 Qwen3-Harrison-RAG Chatbot
|
| 110 |
+
Ask me anything — I’ll rephrase your question, retrieve the right context, and answer with complete reasoning.
|
| 111 |
""")
|
| 112 |
+
chatbot = gr.Chatbot(height=420)
|
| 113 |
with gr.Row():
|
| 114 |
+
msg = gr.Textbox(placeholder="Ask a medical or scientific question...", scale=4)
|
| 115 |
clear = gr.Button("Clear", scale=1)
|
| 116 |
+
msg.submit(generate_answer, [msg, chatbot], [chatbot, chatbot])
|
| 117 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 118 |
|
| 119 |
# =====================================================
|