Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,14 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import faiss
|
|
@@ -6,32 +16,34 @@ import numpy as np
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
# 1
|
| 11 |
-
#
|
| 12 |
-
GEN_MODEL = "hackergeek/qwen3-harrison-rag"
|
| 13 |
-
EMB_MODEL = "sentence-transformers/all-MiniLM-L6-v2" # embedding model
|
| 14 |
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(GEN_MODEL)
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
GEN_MODEL,
|
|
|
|
| 18 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 19 |
-
device_map="auto"
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
-
embedder = SentenceTransformer(EMB_MODEL)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
# 2
|
| 26 |
-
#
|
| 27 |
DOCS_DIR = "docs"
|
| 28 |
os.makedirs(DOCS_DIR, exist_ok=True)
|
| 29 |
|
| 30 |
-
#
|
| 31 |
if not os.listdir(DOCS_DIR):
|
| 32 |
with open(os.path.join(DOCS_DIR, "example.txt"), "w") as f:
|
| 33 |
f.write(
|
| 34 |
-
"
|
| 35 |
)
|
| 36 |
|
| 37 |
docs = []
|
|
@@ -39,19 +51,19 @@ for fn in os.listdir(DOCS_DIR):
|
|
| 39 |
with open(os.path.join(DOCS_DIR, fn), encoding="utf-8") as f:
|
| 40 |
docs.append(f.read())
|
| 41 |
|
| 42 |
-
#
|
| 43 |
chunks = []
|
| 44 |
for doc in docs:
|
| 45 |
for i in range(0, len(doc), 500):
|
| 46 |
chunks.append(doc[i:i+500])
|
| 47 |
|
| 48 |
-
embs = embedder.encode(chunks, convert_to_numpy=True)
|
| 49 |
index = faiss.IndexFlatL2(embs.shape[1])
|
| 50 |
index.add(embs)
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
# 3
|
| 54 |
-
#
|
| 55 |
def retrieve_context(query, k=5):
|
| 56 |
q_emb = embedder.encode([query], convert_to_numpy=True)
|
| 57 |
D, I = index.search(q_emb, k)
|
|
@@ -60,7 +72,7 @@ def retrieve_context(query, k=5):
|
|
| 60 |
def generate_response(query, history):
|
| 61 |
context = retrieve_context(query)
|
| 62 |
system_prompt = (
|
| 63 |
-
"You are a helpful assistant that
|
| 64 |
f"Context:\n{context}\n\n"
|
| 65 |
f"User: {query}\nAssistant:"
|
| 66 |
)
|
|
@@ -74,11 +86,16 @@ def chat_fn(user_message, history):
|
|
| 74 |
history = history + [(user_message, response)]
|
| 75 |
return history, history
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
# 4
|
| 79 |
-
#
|
| 80 |
-
with gr.Blocks(title="Qwen3
|
| 81 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
chatbot = gr.Chatbot(height=400)
|
| 83 |
with gr.Row():
|
| 84 |
msg = gr.Textbox(placeholder="Type your message here...", scale=4)
|
|
@@ -87,8 +104,8 @@ with gr.Blocks(title="Qwen3 Harrison RAG Chatbot") as demo:
|
|
| 87 |
msg.submit(chat_fn, [msg, chatbot], [chatbot, chatbot])
|
| 88 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 89 |
|
| 90 |
-
#
|
| 91 |
-
# 5
|
| 92 |
-
#
|
| 93 |
if __name__ == "__main__":
|
| 94 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
| 3 |
+
# ======================================================
|
| 4 |
+
# OPTION A: Use ephemeral /tmp cache to avoid 50 GB quota
|
| 5 |
+
# ======================================================
|
| 6 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 7 |
+
os.environ["HF_HOME"] = "/tmp/hf_home"
|
| 8 |
+
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf_datasets"
|
| 9 |
+
os.environ["HF_MODULES_CACHE"] = "/tmp/hf_modules"
|
| 10 |
+
# ======================================================
|
| 11 |
+
|
| 12 |
import torch
|
| 13 |
import gradio as gr
|
| 14 |
import faiss
|
|
|
|
| 16 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 17 |
from sentence_transformers import SentenceTransformer
|
| 18 |
|
| 19 |
+
# ------------------------------------------------------
|
| 20 |
+
# 1️⃣ Model setup
|
| 21 |
+
# ------------------------------------------------------
|
| 22 |
+
GEN_MODEL = "hackergeek/qwen3-harrison-rag" # main generation model
|
| 23 |
+
EMB_MODEL = "sentence-transformers/all-MiniLM-L6-v2" # embedding model (lightweight)
|
| 24 |
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(GEN_MODEL)
|
| 26 |
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
GEN_MODEL,
|
| 28 |
+
cache_dir="/tmp/hf_cache",
|
| 29 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 30 |
+
device_map="auto",
|
| 31 |
+
low_cpu_mem_usage=True
|
| 32 |
)
|
| 33 |
|
| 34 |
+
embedder = SentenceTransformer(EMB_MODEL, cache_folder="/tmp/hf_cache")
|
| 35 |
|
| 36 |
+
# ------------------------------------------------------
|
| 37 |
+
# 2️⃣ Load and index documents
|
| 38 |
+
# ------------------------------------------------------
|
| 39 |
DOCS_DIR = "docs"
|
| 40 |
os.makedirs(DOCS_DIR, exist_ok=True)
|
| 41 |
|
| 42 |
+
# create a small demo doc if none exists
|
| 43 |
if not os.listdir(DOCS_DIR):
|
| 44 |
with open(os.path.join(DOCS_DIR, "example.txt"), "w") as f:
|
| 45 |
f.write(
|
| 46 |
+
"Qwen3-Harrison-RAG combines the Qwen3 language model with retrieval-augmented generation for context-aware responses."
|
| 47 |
)
|
| 48 |
|
| 49 |
docs = []
|
|
|
|
| 51 |
with open(os.path.join(DOCS_DIR, fn), encoding="utf-8") as f:
|
| 52 |
docs.append(f.read())
|
| 53 |
|
| 54 |
+
# simple fixed-size chunking
|
| 55 |
chunks = []
|
| 56 |
for doc in docs:
|
| 57 |
for i in range(0, len(doc), 500):
|
| 58 |
chunks.append(doc[i:i+500])
|
| 59 |
|
| 60 |
+
embs = embedder.encode(chunks, convert_to_numpy=True, show_progress_bar=False)
|
| 61 |
index = faiss.IndexFlatL2(embs.shape[1])
|
| 62 |
index.add(embs)
|
| 63 |
|
| 64 |
+
# ------------------------------------------------------
|
| 65 |
+
# 3️⃣ Retrieval + generation logic
|
| 66 |
+
# ------------------------------------------------------
|
| 67 |
def retrieve_context(query, k=5):
|
| 68 |
q_emb = embedder.encode([query], convert_to_numpy=True)
|
| 69 |
D, I = index.search(q_emb, k)
|
|
|
|
| 72 |
def generate_response(query, history):
|
| 73 |
context = retrieve_context(query)
|
| 74 |
system_prompt = (
|
| 75 |
+
"You are a helpful assistant that uses the retrieved context to answer questions.\n\n"
|
| 76 |
f"Context:\n{context}\n\n"
|
| 77 |
f"User: {query}\nAssistant:"
|
| 78 |
)
|
|
|
|
| 86 |
history = history + [(user_message, response)]
|
| 87 |
return history, history
|
| 88 |
|
| 89 |
+
# ------------------------------------------------------
|
| 90 |
+
# 4️⃣ Gradio UI
|
| 91 |
+
# ------------------------------------------------------
|
| 92 |
+
with gr.Blocks(title="Qwen3-Harrison-RAG Chatbot") as demo:
|
| 93 |
+
gr.Markdown(
|
| 94 |
+
"""
|
| 95 |
+
# 🤖 Qwen3-Harrison-RAG Chatbot
|
| 96 |
+
Ask me anything — I’ll retrieve relevant context and answer!
|
| 97 |
+
"""
|
| 98 |
+
)
|
| 99 |
chatbot = gr.Chatbot(height=400)
|
| 100 |
with gr.Row():
|
| 101 |
msg = gr.Textbox(placeholder="Type your message here...", scale=4)
|
|
|
|
| 104 |
msg.submit(chat_fn, [msg, chatbot], [chatbot, chatbot])
|
| 105 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 106 |
|
| 107 |
+
# ------------------------------------------------------
|
| 108 |
+
# 5️⃣ Launch for Hugging Face Spaces
|
| 109 |
+
# ------------------------------------------------------
|
| 110 |
if __name__ == "__main__":
|
| 111 |
demo.launch()
|