Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ from sentence_transformers import SentenceTransformer
|
|
| 8 |
from inspect import signature
|
| 9 |
|
| 10 |
# =====================================================
|
| 11 |
-
#
|
| 12 |
# =====================================================
|
| 13 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 14 |
os.environ["HF_HOME"] = "/tmp/hf_home"
|
|
@@ -16,7 +16,7 @@ os.environ["HF_DATASETS_CACHE"] = "/tmp/hf_datasets"
|
|
| 16 |
os.environ["HF_MODULES_CACHE"] = "/tmp/hf_modules"
|
| 17 |
|
| 18 |
# =====================================================
|
| 19 |
-
#
|
| 20 |
# =====================================================
|
| 21 |
GEN_MODEL_PRIVATE = "hackergeek/qwen3-harrison-rag"
|
| 22 |
GEN_MODEL_PUBLIC = "Qwen/Qwen2.5-1.5B-Instruct"
|
|
@@ -33,7 +33,7 @@ except ImportError:
|
|
| 33 |
accelerate_available = False
|
| 34 |
print("⚠️ `accelerate` not installed. Large private models with device_map='auto' may fail.")
|
| 35 |
|
| 36 |
-
# ---
|
| 37 |
def load_model(model_name, token=None):
|
| 38 |
dtype_value = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 39 |
try:
|
|
@@ -45,10 +45,8 @@ def load_model(model_name, token=None):
|
|
| 45 |
"cache_dir": "/tmp/hf_cache",
|
| 46 |
"low_cpu_mem_usage": True,
|
| 47 |
}
|
| 48 |
-
|
| 49 |
if accelerate_available:
|
| 50 |
load_kwargs["device_map"] = "auto"
|
| 51 |
-
|
| 52 |
if token:
|
| 53 |
load_kwargs["token"] = token
|
| 54 |
|
|
@@ -58,7 +56,7 @@ def load_model(model_name, token=None):
|
|
| 58 |
except Exception as e:
|
| 59 |
raise RuntimeError(f"Failed to load model '{model_name}': {e}")
|
| 60 |
|
| 61 |
-
# --- Attempt
|
| 62 |
try:
|
| 63 |
tokenizer, model = load_model(GEN_MODEL_PRIVATE, token=HF_TOKEN)
|
| 64 |
print(f"✅ Loaded private model: {GEN_MODEL_PRIVATE}")
|
|
@@ -71,57 +69,81 @@ except Exception as e:
|
|
| 71 |
embedder = SentenceTransformer(EMB_MODEL, cache_folder="/tmp/hf_cache")
|
| 72 |
|
| 73 |
# =====================================================
|
| 74 |
-
#
|
| 75 |
# =====================================================
|
| 76 |
index = faiss.IndexFlatL2(384)
|
| 77 |
chunks = ["This is a sample context chunk. Replace with real documents."]
|
| 78 |
|
| 79 |
-
def retrieve_context(query, max_k=5):
|
| 80 |
q_emb = embedder.encode([query], convert_to_numpy=True)
|
| 81 |
if index.ntotal == 0:
|
| 82 |
return "No context available."
|
| 83 |
D, I = index.search(q_emb, max_k)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
query_tokens = len(tokenizer(query)["input_ids"])
|
| 90 |
dynamic_tokens = query_tokens * factor
|
| 91 |
return min(max(dynamic_tokens, min_tokens), max_tokens)
|
| 92 |
|
| 93 |
-
def
|
| 94 |
-
# Set fixed seeds for reproducibility
|
| 95 |
torch.manual_seed(42)
|
| 96 |
np.random.seed(42)
|
| 97 |
|
| 98 |
context = retrieve_context(query)
|
| 99 |
-
|
| 100 |
"You are a helpful assistant that uses the retrieved context to answer questions.\n\n"
|
| 101 |
f"Context:\n{context}\n\n"
|
| 102 |
f"User: {query}\nAssistant:"
|
| 103 |
)
|
| 104 |
-
inputs = tokenizer(system_prompt, return_tensors="pt").to(model.device)
|
| 105 |
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
def chat_fn(user_message, history):
|
| 119 |
-
response =
|
| 120 |
history = history + [(user_message, response)]
|
| 121 |
return history, history
|
| 122 |
|
| 123 |
# =====================================================
|
| 124 |
-
#
|
| 125 |
# =====================================================
|
| 126 |
with gr.Blocks(title="Qwen3-Harrison-RAG Chatbot") as demo:
|
| 127 |
gr.Markdown("""
|
|
@@ -136,7 +158,7 @@ with gr.Blocks(title="Qwen3-Harrison-RAG Chatbot") as demo:
|
|
| 136 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 137 |
|
| 138 |
# =====================================================
|
| 139 |
-
#
|
| 140 |
# =====================================================
|
| 141 |
if __name__ == "__main__":
|
| 142 |
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|
|
|
|
| 8 |
from inspect import signature
|
| 9 |
|
| 10 |
# =====================================================
|
| 11 |
+
# Cache setup
|
| 12 |
# =====================================================
|
| 13 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 14 |
os.environ["HF_HOME"] = "/tmp/hf_home"
|
|
|
|
| 16 |
os.environ["HF_MODULES_CACHE"] = "/tmp/hf_modules"
|
| 17 |
|
| 18 |
# =====================================================
|
| 19 |
+
# Model setup
|
| 20 |
# =====================================================
|
| 21 |
GEN_MODEL_PRIVATE = "hackergeek/qwen3-harrison-rag"
|
| 22 |
GEN_MODEL_PUBLIC = "Qwen/Qwen2.5-1.5B-Instruct"
|
|
|
|
| 33 |
accelerate_available = False
|
| 34 |
print("⚠️ `accelerate` not installed. Large private models with device_map='auto' may fail.")
|
| 35 |
|
| 36 |
+
# --- Load model helper ---
|
| 37 |
def load_model(model_name, token=None):
|
| 38 |
dtype_value = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 39 |
try:
|
|
|
|
| 45 |
"cache_dir": "/tmp/hf_cache",
|
| 46 |
"low_cpu_mem_usage": True,
|
| 47 |
}
|
|
|
|
| 48 |
if accelerate_available:
|
| 49 |
load_kwargs["device_map"] = "auto"
|
|
|
|
| 50 |
if token:
|
| 51 |
load_kwargs["token"] = token
|
| 52 |
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
raise RuntimeError(f"Failed to load model '{model_name}': {e}")
|
| 58 |
|
| 59 |
+
# --- Attempt private model, fallback to public ---
|
| 60 |
try:
|
| 61 |
tokenizer, model = load_model(GEN_MODEL_PRIVATE, token=HF_TOKEN)
|
| 62 |
print(f"✅ Loaded private model: {GEN_MODEL_PRIVATE}")
|
|
|
|
| 69 |
embedder = SentenceTransformer(EMB_MODEL, cache_folder="/tmp/hf_cache")
|
| 70 |
|
| 71 |
# =====================================================
|
| 72 |
+
# Retrieval + generation logic
|
| 73 |
# =====================================================
|
| 74 |
index = faiss.IndexFlatL2(384)
|
| 75 |
chunks = ["This is a sample context chunk. Replace with real documents."]
|
| 76 |
|
| 77 |
+
def retrieve_context(query, max_k=5, distance_threshold=0.5, max_tokens=1500):
|
| 78 |
q_emb = embedder.encode([query], convert_to_numpy=True)
|
| 79 |
if index.ntotal == 0:
|
| 80 |
return "No context available."
|
| 81 |
D, I = index.search(q_emb, max_k)
|
| 82 |
+
sorted_idx = [i for _, i in sorted(zip(D[0], I[0]))] # deterministic
|
| 83 |
+
context = []
|
| 84 |
+
total_tokens = 0
|
| 85 |
+
for idx in sorted_idx:
|
| 86 |
+
# skip distant chunks
|
| 87 |
+
if D[0][list(sorted_idx).index(idx)] > distance_threshold:
|
| 88 |
+
continue
|
| 89 |
+
chunk_tokens = len(tokenizer(chunks[idx])["input_ids"])
|
| 90 |
+
if total_tokens + chunk_tokens > max_tokens:
|
| 91 |
+
break
|
| 92 |
+
context.append(chunks[idx])
|
| 93 |
+
total_tokens += chunk_tokens
|
| 94 |
+
return "\n\n".join(context) if context else chunks[sorted_idx[0]]
|
| 95 |
+
|
| 96 |
+
def calculate_max_tokens(query, min_tokens=50, max_tokens=800, factor=3):
|
| 97 |
query_tokens = len(tokenizer(query)["input_ids"])
|
| 98 |
dynamic_tokens = query_tokens * factor
|
| 99 |
return min(max(dynamic_tokens, min_tokens), max_tokens)
|
| 100 |
|
| 101 |
+
def generate_full_answer(query, history):
|
|
|
|
| 102 |
torch.manual_seed(42)
|
| 103 |
np.random.seed(42)
|
| 104 |
|
| 105 |
context = retrieve_context(query)
|
| 106 |
+
prompt = (
|
| 107 |
"You are a helpful assistant that uses the retrieved context to answer questions.\n\n"
|
| 108 |
f"Context:\n{context}\n\n"
|
| 109 |
f"User: {query}\nAssistant:"
|
| 110 |
)
|
|
|
|
| 111 |
|
| 112 |
+
full_response = ""
|
| 113 |
+
remaining_prompt = prompt
|
| 114 |
|
| 115 |
+
while True:
|
| 116 |
+
inputs = tokenizer(remaining_prompt, return_tensors="pt").to(model.device)
|
| 117 |
+
max_new_tokens = calculate_max_tokens(query)
|
| 118 |
+
|
| 119 |
+
output_ids = model.generate(
|
| 120 |
+
**inputs,
|
| 121 |
+
max_new_tokens=max_new_tokens,
|
| 122 |
+
do_sample=False, # deterministic
|
| 123 |
+
pad_token_id=tokenizer.eos_token_id
|
| 124 |
+
)
|
| 125 |
+
partial_answer = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 126 |
+
partial_answer = partial_answer.split("Assistant:")[-1].strip()
|
| 127 |
+
|
| 128 |
+
# Append partial answer
|
| 129 |
+
full_response += partial_answer
|
| 130 |
+
|
| 131 |
+
# Stop if last character is sentence-ending punctuation
|
| 132 |
+
if full_response.endswith(('.', '!', '?')):
|
| 133 |
+
break
|
| 134 |
+
|
| 135 |
+
# Continue generating by feeding back the last output
|
| 136 |
+
remaining_prompt = full_response
|
| 137 |
+
|
| 138 |
+
return full_response
|
| 139 |
|
| 140 |
def chat_fn(user_message, history):
|
| 141 |
+
response = generate_full_answer(user_message, history)
|
| 142 |
history = history + [(user_message, response)]
|
| 143 |
return history, history
|
| 144 |
|
| 145 |
# =====================================================
|
| 146 |
+
# Gradio UI
|
| 147 |
# =====================================================
|
| 148 |
with gr.Blocks(title="Qwen3-Harrison-RAG Chatbot") as demo:
|
| 149 |
gr.Markdown("""
|
|
|
|
| 158 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 159 |
|
| 160 |
# =====================================================
|
| 161 |
+
# Launch
|
| 162 |
# =====================================================
|
| 163 |
if __name__ == "__main__":
|
| 164 |
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|