|
|
|
""" |
|
MaskFormer Training Script. |
|
|
|
This script is a simplified version of the training script in detectron2/tools. |
|
""" |
|
import copy |
|
import itertools |
|
import logging |
|
import os |
|
from collections import OrderedDict |
|
from typing import Any, Dict, List, Set |
|
|
|
import torch |
|
|
|
import detectron2.utils.comm as comm |
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.config import get_cfg |
|
from detectron2.data import MetadataCatalog, build_detection_train_loader |
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch |
|
from detectron2.evaluation import CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, \ |
|
COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, SemSegEvaluator, verify_results, \ |
|
DatasetEvaluator |
|
|
|
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler |
|
from detectron2.solver.build import maybe_add_gradient_clipping |
|
from detectron2.utils.logger import setup_logger |
|
|
|
from detectron2.utils.file_io import PathManager |
|
import numpy as np |
|
from PIL import Image |
|
import glob |
|
|
|
import pycocotools.mask as mask_util |
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
from detectron2.utils.comm import all_gather, is_main_process, synchronize |
|
import json |
|
|
|
|
|
|
|
|
|
class VOCbEvaluator(SemSegEvaluator): |
|
""" |
|
Evaluate semantic segmentation metrics. |
|
""" |
|
def process(self, inputs, outputs): |
|
""" |
|
Args: |
|
inputs: the inputs to a model. |
|
It is a list of dicts. Each dict corresponds to an image and |
|
contains keys like "height", "width", "file_name". |
|
outputs: the outputs of a model. It is either list of semantic segmentation predictions |
|
(Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic |
|
segmentation prediction in the same format. |
|
""" |
|
for input, output in zip(inputs, outputs): |
|
output = output["sem_seg"].argmax(dim=0).to(self._cpu_device) |
|
pred = np.array(output, dtype=np.int) |
|
pred[pred >= 20] = 20 |
|
with PathManager.open(self.input_file_to_gt_file[input["file_name"]], "rb") as f: |
|
gt = np.array(Image.open(f), dtype=np.int) |
|
|
|
gt[gt == self._ignore_label] = self._num_classes |
|
|
|
self._conf_matrix += np.bincount( |
|
(self._num_classes + 1) * pred.reshape(-1) + gt.reshape(-1), |
|
minlength=self._conf_matrix.size, |
|
).reshape(self._conf_matrix.shape) |
|
|
|
self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"])) |
|
|
|
|
|
from cat_seg import ( |
|
DETRPanopticDatasetMapper, |
|
MaskFormerPanopticDatasetMapper, |
|
MaskFormerSemanticDatasetMapper, |
|
SemanticSegmentorWithTTA, |
|
add_cat_seg_config, |
|
) |
|
|
|
|
|
class Trainer(DefaultTrainer): |
|
""" |
|
Extension of the Trainer class adapted to DETR. |
|
""" |
|
|
|
@classmethod |
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None): |
|
""" |
|
Create evaluator(s) for a given dataset. |
|
This uses the special metadata "evaluator_type" associated with each |
|
builtin dataset. For your own dataset, you can simply create an |
|
evaluator manually in your script and do not have to worry about the |
|
hacky if-else logic here. |
|
""" |
|
if output_folder is None: |
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") |
|
evaluator_list = [] |
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type |
|
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]: |
|
evaluator_list.append( |
|
SemSegEvaluator( |
|
dataset_name, |
|
distributed=True, |
|
output_dir=output_folder, |
|
) |
|
) |
|
|
|
if evaluator_type == "sem_seg_background": |
|
evaluator_list.append( |
|
VOCbEvaluator( |
|
dataset_name, |
|
distributed=True, |
|
output_dir=output_folder, |
|
) |
|
) |
|
if evaluator_type == "coco": |
|
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) |
|
if evaluator_type in [ |
|
"coco_panoptic_seg", |
|
"ade20k_panoptic_seg", |
|
"cityscapes_panoptic_seg", |
|
]: |
|
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) |
|
if evaluator_type == "cityscapes_instance": |
|
assert ( |
|
torch.cuda.device_count() >= comm.get_rank() |
|
), "CityscapesEvaluator currently do not work with multiple machines." |
|
return CityscapesInstanceEvaluator(dataset_name) |
|
if evaluator_type == "cityscapes_sem_seg": |
|
assert ( |
|
torch.cuda.device_count() >= comm.get_rank() |
|
), "CityscapesEvaluator currently do not work with multiple machines." |
|
return CityscapesSemSegEvaluator(dataset_name) |
|
if evaluator_type == "cityscapes_panoptic_seg": |
|
assert ( |
|
torch.cuda.device_count() >= comm.get_rank() |
|
), "CityscapesEvaluator currently do not work with multiple machines." |
|
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name)) |
|
if len(evaluator_list) == 0: |
|
raise NotImplementedError( |
|
"no Evaluator for the dataset {} with the type {}".format( |
|
dataset_name, evaluator_type |
|
) |
|
) |
|
elif len(evaluator_list) == 1: |
|
return evaluator_list[0] |
|
return DatasetEvaluators(evaluator_list) |
|
|
|
@classmethod |
|
def build_train_loader(cls, cfg): |
|
|
|
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic": |
|
mapper = MaskFormerSemanticDatasetMapper(cfg, True) |
|
|
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic": |
|
mapper = MaskFormerPanopticDatasetMapper(cfg, True) |
|
|
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "detr_panoptic": |
|
mapper = DETRPanopticDatasetMapper(cfg, True) |
|
else: |
|
mapper = None |
|
return build_detection_train_loader(cfg, mapper=mapper) |
|
|
|
@classmethod |
|
def build_lr_scheduler(cls, cfg, optimizer): |
|
""" |
|
It now calls :func:`detectron2.solver.build_lr_scheduler`. |
|
Overwrite it if you'd like a different scheduler. |
|
""" |
|
return build_lr_scheduler(cfg, optimizer) |
|
|
|
@classmethod |
|
def build_optimizer(cls, cfg, model): |
|
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM |
|
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED |
|
|
|
defaults = {} |
|
defaults["lr"] = cfg.SOLVER.BASE_LR |
|
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY |
|
|
|
norm_module_types = ( |
|
torch.nn.BatchNorm1d, |
|
torch.nn.BatchNorm2d, |
|
torch.nn.BatchNorm3d, |
|
torch.nn.SyncBatchNorm, |
|
|
|
torch.nn.GroupNorm, |
|
torch.nn.InstanceNorm1d, |
|
torch.nn.InstanceNorm2d, |
|
torch.nn.InstanceNorm3d, |
|
torch.nn.LayerNorm, |
|
torch.nn.LocalResponseNorm, |
|
) |
|
|
|
params: List[Dict[str, Any]] = [] |
|
memo: Set[torch.nn.parameter.Parameter] = set() |
|
|
|
|
|
for module_name, module in model.named_modules(): |
|
for module_param_name, value in module.named_parameters(recurse=False): |
|
if not value.requires_grad: |
|
continue |
|
|
|
if value in memo: |
|
continue |
|
memo.add(value) |
|
hyperparams = copy.copy(defaults) |
|
if "backbone" in module_name: |
|
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER |
|
if "clip_model" in module_name: |
|
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.CLIP_MULTIPLIER |
|
|
|
|
|
if ( |
|
"relative_position_bias_table" in module_param_name |
|
or "absolute_pos_embed" in module_param_name |
|
): |
|
print(module_param_name) |
|
hyperparams["weight_decay"] = 0.0 |
|
if isinstance(module, norm_module_types): |
|
hyperparams["weight_decay"] = weight_decay_norm |
|
if isinstance(module, torch.nn.Embedding): |
|
hyperparams["weight_decay"] = weight_decay_embed |
|
params.append({"params": [value], **hyperparams}) |
|
|
|
def maybe_add_full_model_gradient_clipping(optim): |
|
|
|
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE |
|
enable = ( |
|
cfg.SOLVER.CLIP_GRADIENTS.ENABLED |
|
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" |
|
and clip_norm_val > 0.0 |
|
) |
|
|
|
class FullModelGradientClippingOptimizer(optim): |
|
def step(self, closure=None): |
|
all_params = itertools.chain(*[x["params"] for x in self.param_groups]) |
|
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) |
|
super().step(closure=closure) |
|
|
|
return FullModelGradientClippingOptimizer if enable else optim |
|
|
|
optimizer_type = cfg.SOLVER.OPTIMIZER |
|
if optimizer_type == "SGD": |
|
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( |
|
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM |
|
) |
|
elif optimizer_type == "ADAMW": |
|
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( |
|
params, cfg.SOLVER.BASE_LR |
|
) |
|
else: |
|
raise NotImplementedError(f"no optimizer type {optimizer_type}") |
|
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": |
|
optimizer = maybe_add_gradient_clipping(cfg, optimizer) |
|
return optimizer |
|
|
|
@classmethod |
|
def test_with_TTA(cls, cfg, model): |
|
logger = logging.getLogger("detectron2.trainer") |
|
|
|
logger.info("Running inference with test-time augmentation ...") |
|
model = SemanticSegmentorWithTTA(cfg, model) |
|
evaluators = [ |
|
cls.build_evaluator( |
|
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") |
|
) |
|
for name in cfg.DATASETS.TEST |
|
] |
|
res = cls.test(cfg, model, evaluators) |
|
res = OrderedDict({k + "_TTA": v for k, v in res.items()}) |
|
return res |
|
|
|
|
|
def setup(args): |
|
""" |
|
Create configs and perform basic setups. |
|
""" |
|
cfg = get_cfg() |
|
|
|
add_deeplab_config(cfg) |
|
add_cat_seg_config(cfg) |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
cfg.freeze() |
|
default_setup(cfg, args) |
|
|
|
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="mask_former") |
|
return cfg |
|
|
|
|
|
def main(args): |
|
cfg = setup(args) |
|
torch.set_float32_matmul_precision("high") |
|
if args.eval_only: |
|
model = Trainer.build_model(cfg) |
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( |
|
cfg.MODEL.WEIGHTS, resume=args.resume |
|
) |
|
res = Trainer.test(cfg, model) |
|
if cfg.TEST.AUG.ENABLED: |
|
res.update(Trainer.test_with_TTA(cfg, model)) |
|
if comm.is_main_process(): |
|
verify_results(cfg, res) |
|
return res |
|
|
|
trainer = Trainer(cfg) |
|
trainer.resume_or_load(resume=args.resume) |
|
return trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = default_argument_parser().parse_args() |
|
print("Command Line Args:", args) |
|
launch( |
|
main, |
|
args.num_gpus, |
|
num_machines=args.num_machines, |
|
machine_rank=args.machine_rank, |
|
dist_url=args.dist_url, |
|
args=(args,), |
|
) |
|
|