Spaces:
Build error
Build error
Create new file
Browse files- lib/core/postprocess.py +223 -0
lib/core/postprocess.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from lib.utils import is_parallel
|
| 5 |
+
import numpy as np
|
| 6 |
+
np.set_printoptions(threshold=np.inf)
|
| 7 |
+
import cv2
|
| 8 |
+
from sklearn.cluster import DBSCAN
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def build_targets(cfg, predictions, targets, model):
|
| 12 |
+
'''
|
| 13 |
+
predictions
|
| 14 |
+
[16, 3, 32, 32, 85]
|
| 15 |
+
[16, 3, 16, 16, 85]
|
| 16 |
+
[16, 3, 8, 8, 85]
|
| 17 |
+
torch.tensor(predictions[i].shape)[[3, 2, 3, 2]]
|
| 18 |
+
[32,32,32,32]
|
| 19 |
+
[16,16,16,16]
|
| 20 |
+
[8,8,8,8]
|
| 21 |
+
targets[3,x,7]
|
| 22 |
+
t [index, class, x, y, w, h, head_index]
|
| 23 |
+
'''
|
| 24 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
| 25 |
+
det = model.module.model[model.module.detector_index] if is_parallel(model) \
|
| 26 |
+
else model.model[model.detector_index] # Detect() module
|
| 27 |
+
# print(type(model))
|
| 28 |
+
# det = model.model[model.detector_index]
|
| 29 |
+
# print(type(det))
|
| 30 |
+
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
| 31 |
+
tcls, tbox, indices, anch = [], [], [], []
|
| 32 |
+
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
| 33 |
+
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
| 34 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
| 35 |
+
|
| 36 |
+
g = 0.5 # bias
|
| 37 |
+
off = torch.tensor([[0, 0],
|
| 38 |
+
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
| 39 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
| 40 |
+
], device=targets.device).float() * g # offsets
|
| 41 |
+
|
| 42 |
+
for i in range(det.nl):
|
| 43 |
+
anchors = det.anchors[i] #[3,2]
|
| 44 |
+
gain[2:6] = torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
| 45 |
+
# Match targets to anchors
|
| 46 |
+
t = targets * gain
|
| 47 |
+
|
| 48 |
+
if nt:
|
| 49 |
+
# Matches
|
| 50 |
+
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
| 51 |
+
j = torch.max(r, 1. / r).max(2)[0] < cfg.TRAIN.ANCHOR_THRESHOLD # compare
|
| 52 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
| 53 |
+
t = t[j] # filter
|
| 54 |
+
|
| 55 |
+
# Offsets
|
| 56 |
+
gxy = t[:, 2:4] # grid xy
|
| 57 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
| 58 |
+
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
| 59 |
+
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
| 60 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
| 61 |
+
t = t.repeat((5, 1, 1))[j]
|
| 62 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
| 63 |
+
else:
|
| 64 |
+
t = targets[0]
|
| 65 |
+
offsets = 0
|
| 66 |
+
|
| 67 |
+
# Define
|
| 68 |
+
b, c = t[:, :2].long().T # image, class
|
| 69 |
+
gxy = t[:, 2:4] # grid xy
|
| 70 |
+
gwh = t[:, 4:6] # grid wh
|
| 71 |
+
gij = (gxy - offsets).long()
|
| 72 |
+
gi, gj = gij.T # grid xy indices
|
| 73 |
+
|
| 74 |
+
# Append
|
| 75 |
+
a = t[:, 6].long() # anchor indices
|
| 76 |
+
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
| 77 |
+
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
| 78 |
+
anch.append(anchors[a]) # anchors
|
| 79 |
+
tcls.append(c) # class
|
| 80 |
+
|
| 81 |
+
return tcls, tbox, indices, anch
|
| 82 |
+
|
| 83 |
+
def morphological_process(image, kernel_size=5, func_type=cv2.MORPH_CLOSE):
|
| 84 |
+
"""
|
| 85 |
+
morphological process to fill the hole in the binary segmentation result
|
| 86 |
+
:param image:
|
| 87 |
+
:param kernel_size:
|
| 88 |
+
:return:
|
| 89 |
+
"""
|
| 90 |
+
if len(image.shape) == 3:
|
| 91 |
+
raise ValueError('Binary segmentation result image should be a single channel image')
|
| 92 |
+
|
| 93 |
+
if image.dtype is not np.uint8:
|
| 94 |
+
image = np.array(image, np.uint8)
|
| 95 |
+
|
| 96 |
+
kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size))
|
| 97 |
+
|
| 98 |
+
# close operation fille hole
|
| 99 |
+
closing = cv2.morphologyEx(image, func_type, kernel, iterations=1)
|
| 100 |
+
|
| 101 |
+
return closing
|
| 102 |
+
|
| 103 |
+
def connect_components_analysis(image):
|
| 104 |
+
"""
|
| 105 |
+
connect components analysis to remove the small components
|
| 106 |
+
:param image:
|
| 107 |
+
:return:
|
| 108 |
+
"""
|
| 109 |
+
if len(image.shape) == 3:
|
| 110 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 111 |
+
else:
|
| 112 |
+
gray_image = image
|
| 113 |
+
# print(gray_image.dtype)
|
| 114 |
+
return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
|
| 115 |
+
|
| 116 |
+
def if_y(samples_x):
|
| 117 |
+
for sample_x in samples_x:
|
| 118 |
+
if len(sample_x):
|
| 119 |
+
# if len(sample_x) != (sample_x[-1] - sample_x[0] + 1) or sample_x[-1] == sample_x[0]:
|
| 120 |
+
if sample_x[-1] == sample_x[0]:
|
| 121 |
+
return False
|
| 122 |
+
return True
|
| 123 |
+
|
| 124 |
+
def fitlane(mask, sel_labels, labels, stats):
|
| 125 |
+
H, W = mask.shape
|
| 126 |
+
for label_group in sel_labels:
|
| 127 |
+
states = [stats[k] for k in label_group]
|
| 128 |
+
x, y, w, h, _ = states[0]
|
| 129 |
+
# if len(label_group) > 1:
|
| 130 |
+
# print('in')
|
| 131 |
+
# for m in range(len(label_group)-1):
|
| 132 |
+
# labels[labels == label_group[m+1]] = label_group[0]
|
| 133 |
+
t = label_group[0]
|
| 134 |
+
# samples_y = np.linspace(y, H-1, 30)
|
| 135 |
+
# else:
|
| 136 |
+
samples_y = np.linspace(y, y+h-1, 30)
|
| 137 |
+
|
| 138 |
+
samples_x = [np.where(labels[int(sample_y)]==t)[0] for sample_y in samples_y]
|
| 139 |
+
|
| 140 |
+
if if_y(samples_x):
|
| 141 |
+
samples_x = [int(np.mean(sample_x)) if len(sample_x) else -1 for sample_x in samples_x]
|
| 142 |
+
samples_x = np.array(samples_x)
|
| 143 |
+
samples_y = np.array(samples_y)
|
| 144 |
+
samples_y = samples_y[samples_x != -1]
|
| 145 |
+
samples_x = samples_x[samples_x != -1]
|
| 146 |
+
func = np.polyfit(samples_y, samples_x, 2)
|
| 147 |
+
x_limits = np.polyval(func, H-1)
|
| 148 |
+
# if (y_max + h - 1) >= 720:
|
| 149 |
+
if x_limits < 0 or x_limits > W:
|
| 150 |
+
# if (y_max + h - 1) > 720:
|
| 151 |
+
# draw_y = np.linspace(y, 720-1, 720-y)
|
| 152 |
+
draw_y = np.linspace(y, y+h-1, h)
|
| 153 |
+
else:
|
| 154 |
+
# draw_y = np.linspace(y, y+h-1, y+h-y)
|
| 155 |
+
draw_y = np.linspace(y, H-1, H-y)
|
| 156 |
+
draw_x = np.polyval(func, draw_y)
|
| 157 |
+
# draw_y = draw_y[draw_x < W]
|
| 158 |
+
# draw_x = draw_x[draw_x < W]
|
| 159 |
+
draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32)
|
| 160 |
+
cv2.polylines(mask, [draw_points], False, 1, thickness=15)
|
| 161 |
+
else:
|
| 162 |
+
# if ( + w - 1) >= 1280:
|
| 163 |
+
samples_x = np.linspace(x, W-1, 30)
|
| 164 |
+
# else:
|
| 165 |
+
# samples_x = np.linspace(x, x_max+w-1, 30)
|
| 166 |
+
samples_y = [np.where(labels[:, int(sample_x)]==t)[0] for sample_x in samples_x]
|
| 167 |
+
samples_y = [int(np.mean(sample_y)) if len(sample_y) else -1 for sample_y in samples_y]
|
| 168 |
+
samples_x = np.array(samples_x)
|
| 169 |
+
samples_y = np.array(samples_y)
|
| 170 |
+
samples_x = samples_x[samples_y != -1]
|
| 171 |
+
samples_y = samples_y[samples_y != -1]
|
| 172 |
+
try:
|
| 173 |
+
func = np.polyfit(samples_x, samples_y, 2)
|
| 174 |
+
except:
|
| 175 |
+
pass
|
| 176 |
+
# y_limits = np.polyval(func, 0)
|
| 177 |
+
# if y_limits > 720 or y_limits < 0:
|
| 178 |
+
# if (x + w - 1) >= 1280:
|
| 179 |
+
# draw_x = np.linspace(x, 1280-1, 1280-x)
|
| 180 |
+
# else:
|
| 181 |
+
y_limits = np.polyval(func, 0)
|
| 182 |
+
if y_limits >= H or y_limits < 0:
|
| 183 |
+
draw_x = np.linspace(x, x+w-1, w+x-x)
|
| 184 |
+
else:
|
| 185 |
+
y_limits = np.polyval(func, W-1)
|
| 186 |
+
if y_limits >= H or y_limits < 0:
|
| 187 |
+
draw_x = np.linspace(x, x+w-1, w+x-x)
|
| 188 |
+
# if x+w-1 < 640:
|
| 189 |
+
# draw_x = np.linspace(0, x+w-1, w+x-x)
|
| 190 |
+
else:
|
| 191 |
+
draw_x = np.linspace(x, W-1, W-x)
|
| 192 |
+
draw_y = np.polyval(func, draw_x)
|
| 193 |
+
draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32)
|
| 194 |
+
cv2.polylines(mask, [draw_points], False, 1, thickness=15)
|
| 195 |
+
return mask
|
| 196 |
+
|
| 197 |
+
def connect_lane(image, shadow_height=0):
|
| 198 |
+
if len(image.shape) == 3:
|
| 199 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 200 |
+
else:
|
| 201 |
+
gray_image = image
|
| 202 |
+
if shadow_height:
|
| 203 |
+
image[:shadow_height] = 0
|
| 204 |
+
mask = np.zeros((image.shape[0], image.shape[1]), np.uint8)
|
| 205 |
+
|
| 206 |
+
num_labels, labels, stats, centers = cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
|
| 207 |
+
# ratios = []
|
| 208 |
+
selected_label = []
|
| 209 |
+
|
| 210 |
+
for t in range(1, num_labels, 1):
|
| 211 |
+
_, _, _, _, area = stats[t]
|
| 212 |
+
if area > 400:
|
| 213 |
+
selected_label.append(t)
|
| 214 |
+
if len(selected_label) == 0:
|
| 215 |
+
return mask
|
| 216 |
+
else:
|
| 217 |
+
split_labels = [[label,] for label in selected_label]
|
| 218 |
+
mask_post = fitlane(mask, split_labels, labels, stats)
|
| 219 |
+
return mask_post
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|