Spaces:
Runtime error
Runtime error
| # | |
| # Copyright (C) 2023, Inria | |
| # GRAPHDECO research group, https://team.inria.fr/graphdeco | |
| # All rights reserved. | |
| # | |
| # This software is free for non-commercial, research and evaluation use | |
| # under the terms of the LICENSE.md file. | |
| # | |
| # For inquiries contact [email protected] | |
| # | |
| import os | |
| import random | |
| import json | |
| from utils.system_utils import searchForMaxIteration | |
| from scene.dataset_readers import sceneLoadTypeCallbacks,GenerateRandomCameras,GeneratePurnCameras,GenerateCircleCameras | |
| from scene.gaussian_model import GaussianModel | |
| from arguments import ModelParams, GenerateCamParams | |
| from utils.camera_utils import cameraList_from_camInfos, camera_to_JSON, cameraList_from_RcamInfos | |
| class Scene: | |
| gaussians : GaussianModel | |
| def __init__(self, args : ModelParams, pose_args : GenerateCamParams, gaussians : GaussianModel, load_iteration=None, shuffle=False, resolution_scales=[1.0]): | |
| """b | |
| :param path: Path to colmap scene main folder. | |
| """ | |
| self.model_path = args._model_path | |
| self.pretrained_model_path = args.pretrained_model_path | |
| self.loaded_iter = None | |
| self.gaussians = gaussians | |
| self.resolution_scales = resolution_scales | |
| self.pose_args = pose_args | |
| self.args = args | |
| if load_iteration: | |
| if load_iteration == -1: | |
| self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud")) | |
| else: | |
| self.loaded_iter = load_iteration | |
| print("Loading trained model at iteration {}".format(self.loaded_iter)) | |
| self.test_cameras = {} | |
| scene_info = sceneLoadTypeCallbacks["RandomCam"](self.model_path ,pose_args) | |
| json_cams = [] | |
| camlist = [] | |
| if scene_info.test_cameras: | |
| camlist.extend(scene_info.test_cameras) | |
| for id, cam in enumerate(camlist): | |
| json_cams.append(camera_to_JSON(id, cam)) | |
| with open(os.path.join(self.model_path, "cameras.json"), 'w') as file: | |
| json.dump(json_cams, file) | |
| if shuffle: | |
| random.shuffle(scene_info.test_cameras) # Multi-res consistent random shuffling | |
| self.cameras_extent = pose_args.default_radius # scene_info.nerf_normalization["radius"] | |
| for resolution_scale in resolution_scales: | |
| self.test_cameras[resolution_scale] = cameraList_from_RcamInfos(scene_info.test_cameras, resolution_scale, self.pose_args) | |
| if self.loaded_iter: | |
| self.gaussians.load_ply(os.path.join(self.model_path, | |
| "point_cloud", | |
| "iteration_" + str(self.loaded_iter), | |
| "point_cloud.ply")) | |
| elif self.pretrained_model_path is not None: | |
| self.gaussians.load_ply(self.pretrained_model_path) | |
| else: | |
| self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent) | |
| def save(self, iteration): | |
| point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration)) | |
| self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply")) | |
| def getRandTrainCameras(self, scale=1.0): | |
| rand_train_cameras = GenerateRandomCameras(self.pose_args, self.args.batch, SSAA=True) | |
| train_cameras = {} | |
| for resolution_scale in self.resolution_scales: | |
| train_cameras[resolution_scale] = cameraList_from_RcamInfos(rand_train_cameras, resolution_scale, self.pose_args, SSAA=True) | |
| return train_cameras[scale] | |
| def getPurnTrainCameras(self, scale=1.0): | |
| rand_train_cameras = GeneratePurnCameras(self.pose_args) | |
| train_cameras = {} | |
| for resolution_scale in self.resolution_scales: | |
| train_cameras[resolution_scale] = cameraList_from_RcamInfos(rand_train_cameras, resolution_scale, self.pose_args) | |
| return train_cameras[scale] | |
| def getTestCameras(self, scale=1.0): | |
| return self.test_cameras[scale] | |
| def getCircleVideoCameras(self, scale=1.0,batch_size=120, render45 = True): | |
| video_circle_cameras = GenerateCircleCameras(self.pose_args,batch_size,render45) | |
| video_cameras = {} | |
| for resolution_scale in self.resolution_scales: | |
| video_cameras[resolution_scale] = cameraList_from_RcamInfos(video_circle_cameras, resolution_scale, self.pose_args) | |
| return video_cameras[scale] |