Spaces:
Runtime error
Runtime error
| from transformers import CLIPTextModel, CLIPTokenizer, logging | |
| from diffusers import StableDiffusionPipeline, DiffusionPipeline, DDPMScheduler, DDIMScheduler, EulerDiscreteScheduler, \ | |
| EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ControlNetModel, \ | |
| DDIMInverseScheduler | |
| from diffusers.utils import BaseOutput, deprecate | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision.transforms as T | |
| from typing import List, Optional, Tuple, Union | |
| from dataclasses import dataclass | |
| from diffusers.utils import BaseOutput, randn_tensor | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM | |
| class DDIMSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| pred_original_sample: Optional[torch.FloatTensor] = None | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise | |
| def ddim_add_noise( | |
| self, | |
| original_samples: torch.FloatTensor, | |
| noise: torch.FloatTensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.FloatTensor: | |
| # Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
| alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | |
| timesteps = timesteps.to(original_samples.device) | |
| sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
| sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
| while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
| sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
| while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
| noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
| return noisy_samples | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.step | |
| def ddim_step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| delta_timestep: int = None, | |
| eta: float = 0.0, | |
| use_clipped_model_output: bool = False, | |
| generator=None, | |
| variance_noise: Optional[torch.FloatTensor] = None, | |
| return_dict: bool = True, | |
| **kwargs | |
| ) -> Union[DDIMSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| eta (`float`): | |
| The weight of noise for added noise in diffusion step. | |
| use_clipped_model_output (`bool`, defaults to `False`): | |
| If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary | |
| because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no | |
| clipping has happened, "corrected" `model_output` would coincide with the one provided as input and | |
| `use_clipped_model_output` has no effect. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| variance_noise (`torch.FloatTensor`): | |
| Alternative to generating noise with `generator` by directly providing the noise for the variance | |
| itself. Useful for methods such as [`CycleDiffusion`]. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf | |
| # Ideally, read DDIM paper in-detail understanding | |
| # Notation (<variable name> -> <name in paper> | |
| # - pred_noise_t -> e_theta(x_t, t) | |
| # - pred_original_sample -> f_theta(x_t, t) or x_0 | |
| # - std_dev_t -> sigma_t | |
| # - eta -> η | |
| # - pred_sample_direction -> "direction pointing to x_t" | |
| # - pred_prev_sample -> "x_t-1" | |
| if delta_timestep is None: | |
| # 1. get previous step value (=t+1) | |
| prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps | |
| else: | |
| prev_timestep = timestep - delta_timestep | |
| # 2. compute alphas, betas | |
| alpha_prod_t = self.alphas_cumprod[timestep] | |
| alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 3. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| pred_epsilon = model_output | |
| elif self.config.prediction_type == "sample": | |
| pred_original_sample = model_output | |
| pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
| elif self.config.prediction_type == "v_prediction": | |
| pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
| pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
| " `v_prediction`" | |
| ) | |
| # 4. Clip or threshold "predicted x_0" | |
| if self.config.thresholding: | |
| pred_original_sample = self._threshold_sample(pred_original_sample) | |
| elif self.config.clip_sample: | |
| pred_original_sample = pred_original_sample.clamp( | |
| -self.config.clip_sample_range, self.config.clip_sample_range | |
| ) | |
| # 5. compute variance: "sigma_t(η)" -> see formula (16) | |
| # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) | |
| # if prev_timestep < timestep: | |
| # else: | |
| # variance = abs(self._get_variance(prev_timestep, timestep)) | |
| variance = abs(self._get_variance(timestep, prev_timestep)) | |
| std_dev_t = eta * variance | |
| std_dev_t = min((1 - alpha_prod_t_prev) / 2, std_dev_t) ** 0.5 | |
| if use_clipped_model_output: | |
| # the pred_epsilon is always re-derived from the clipped x_0 in Glide | |
| pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
| # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon | |
| # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| if eta > 0: | |
| if variance_noise is not None and generator is not None: | |
| raise ValueError( | |
| "Cannot pass both generator and variance_noise. Please make sure that either `generator` or" | |
| " `variance_noise` stays `None`." | |
| ) | |
| if variance_noise is None: | |
| variance_noise = randn_tensor( | |
| model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype | |
| ) | |
| variance = std_dev_t * variance_noise | |
| prev_sample = prev_sample + variance | |
| prev_sample = torch.nan_to_num(prev_sample) | |
| if not return_dict: | |
| return (prev_sample,) | |
| return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
| def pred_original( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timesteps: int, | |
| sample: torch.FloatTensor, | |
| ): | |
| if isinstance(self, DDPMScheduler) or isinstance(self, DDIMScheduler): | |
| # Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
| alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype) | |
| timesteps = timesteps.to(sample.device) | |
| # 1. compute alphas, betas | |
| alpha_prod_t = alphas_cumprod[timesteps] | |
| while len(alpha_prod_t.shape) < len(sample.shape): | |
| alpha_prod_t = alpha_prod_t.unsqueeze(-1) | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 2. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| elif self.config.prediction_type == "sample": | |
| pred_original_sample = model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" | |
| " `v_prediction` for the DDPMScheduler." | |
| ) | |
| # 3. Clip or threshold "predicted x_0" | |
| if self.config.thresholding: | |
| pred_original_sample = self._threshold_sample(pred_original_sample) | |
| elif self.config.clip_sample: | |
| pred_original_sample = pred_original_sample.clamp( | |
| -self.config.clip_sample_range, self.config.clip_sample_range | |
| ) | |
| elif isinstance(self, EulerAncestralDiscreteScheduler) or isinstance(self, EulerDiscreteScheduler): | |
| timestep = timesteps.to(self.timesteps.device) | |
| step_index = (self.timesteps == timestep).nonzero().item() | |
| sigma = self.sigmas[step_index].to(device=sample.device, dtype=sample.dtype) | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = sample - sigma * model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| # * c_out + input * c_skip | |
| pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) | |
| elif self.config.prediction_type == "sample": | |
| raise NotImplementedError("prediction_type not implemented yet: sample") | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" | |
| ) | |
| else: | |
| raise NotImplementedError | |
| return pred_original_sample |