File size: 3,870 Bytes
81b1a0e
 
 
 
 
 
 
 
e797135
 
 
6be00d8
e797135
81b1a0e
69b7015
81b1a0e
327742a
 
 
 
 
 
 
81b1a0e
f406b44
81b1a0e
327742a
81b1a0e
 
 
 
 
 
 
 
 
69b7015
 
 
 
 
81b1a0e
 
 
 
e797135
8aa2ae3
 
327742a
 
81b1a0e
 
327742a
81b1a0e
f406b44
81b1a0e
 
 
 
 
 
69b7015
81b1a0e
 
 
 
 
 
 
cf6fe1a
 
440356f
81b1a0e
e797135
81b1a0e
 
e797135
de5ed42
 
 
 
 
 
 
81b1a0e
 
e797135
 
81b1a0e
 
 
df154af
81b1a0e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
from glob import glob
import cv2
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
import gradio as gr
import spaces
from gradio_imageslider import ImageSlider

torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f

device = "cuda" if torch.cuda.is_available() else "cpu"


def array_to_pil_image(image, size=(1024, 1024)):
    image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
    image = Image.fromarray(image).convert('RGB')
    return image


class ImagePreprocessor():
    def __init__(self, resolution=(1024, 1024)) -> None:
        self.transform_image = transforms.Compose([
            # transforms.Resize(resolution),    # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image()
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])

    def proc(self, image):
        image = self.transform_image(image)
        return image



from transformers import AutoModelForImageSegmentation
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()


# def predict(image_1, image_2):
#     images = [image_1, image_2]
@spaces.GPU
def predict(image, resolution):
    resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution
    # Image is a RGB numpy array.
    resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
    images = [image]
    image_shapes = [image.shape[:2] for image in images]
    images = [array_to_pil_image(image, resolution) for image in images]

    image_preprocessor = ImagePreprocessor(resolution=resolution)
    images_proc = []
    for image in images:
        images_proc.append(image_preprocessor.proc(image))
    images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc])

    with torch.no_grad():
        scaled_preds_tensor = birefnet(images_proc.to(device))[-1].sigmoid()   # BiRefNet needs an sigmoid activation outside the forward.
    preds = []
    for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor):
        if device == 'cuda':
            pred_tensor = pred_tensor.cpu()
        preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy())
    image_preds = []
    for image, pred in zip(images, preds):
        image = image.resize(pred.shape[::-1])
        pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1)
        image_preds.append((pred * image).astype(np.uint8))

    return image, image_preds[0]


examples = [[_] for _ in glob('materials/examples/*')][:]

# Add the option of resolution in a text box.
for idx_example, example in enumerate(examples):
    examples[idx_example].append('1024x1024')
examples.append(examples[-1].copy())
examples[-1][1] = '512x512'

demo = gr.Interface(
    fn=predict,
    inputs=['image', gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution")],
    outputs=ImageSlider(),
    examples=examples,
    title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
    description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)'
                 '\nThe resolution used in our training was `1024x1024`, which is too much burden for the huggingface free spaces like this one (cost nearly 40s). Please set resolution as more than `768x768` for images with many texture details to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.')
)
demo.launch(debug=True)