Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class Visual_encoder(nn.Module): | |
| def __init__(self, args): | |
| super(Visual_encoder, self).__init__() | |
| self.args = args | |
| # visual frontend | |
| self.v_frontend = VisualFrontend(args) | |
| self.v_ds = nn.Conv1d(512, 256, 1, bias=False) | |
| # visual adaptor | |
| stacks = [] | |
| for x in range(5): | |
| stacks +=[VisualConv1D(args, V=256, H=512)] | |
| self.visual_conv = nn.Sequential(*stacks) | |
| def forward(self, visual): | |
| visual = self.v_frontend(visual.unsqueeze(1)) | |
| visual = self.v_ds(visual) | |
| visual = self.visual_conv(visual) | |
| return visual | |
| class ResNetLayer(nn.Module): | |
| """ | |
| A ResNet layer used to build the ResNet network. | |
| Architecture: | |
| --> conv-bn-relu -> conv -> + -> bn-relu -> conv-bn-relu -> conv -> + -> bn-relu --> | |
| | | | | | |
| -----> downsample ------> -------------------------------------> | |
| """ | |
| def __init__(self, inplanes, outplanes, stride): | |
| super(ResNetLayer, self).__init__() | |
| self.conv1a = nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False) | |
| self.bn1a = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001) | |
| self.conv2a = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.stride = stride | |
| self.downsample = nn.Conv2d(inplanes, outplanes, kernel_size=(1,1), stride=stride, bias=False) | |
| self.outbna = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001) | |
| self.conv1b = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.bn1b = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001) | |
| self.conv2b = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.outbnb = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001) | |
| return | |
| def forward(self, inputBatch): | |
| batch = F.relu(self.bn1a(self.conv1a(inputBatch))) | |
| batch = self.conv2a(batch) | |
| if self.stride == 1: | |
| residualBatch = inputBatch | |
| else: | |
| residualBatch = self.downsample(inputBatch) | |
| batch = batch + residualBatch | |
| intermediateBatch = batch | |
| batch = F.relu(self.outbna(batch)) | |
| batch = F.relu(self.bn1b(self.conv1b(batch))) | |
| batch = self.conv2b(batch) | |
| residualBatch = intermediateBatch | |
| batch = batch + residualBatch | |
| outputBatch = F.relu(self.outbnb(batch)) | |
| return outputBatch | |
| class ResNet(nn.Module): | |
| """ | |
| An 18-layer ResNet architecture. | |
| """ | |
| def __init__(self): | |
| super(ResNet, self).__init__() | |
| self.layer1 = ResNetLayer(64, 64, stride=1) | |
| self.layer2 = ResNetLayer(64, 128, stride=2) | |
| self.layer3 = ResNetLayer(128, 256, stride=2) | |
| self.layer4 = ResNetLayer(256, 512, stride=2) | |
| self.avgpool = nn.AvgPool2d(kernel_size=(4,4), stride=(1,1)) | |
| return | |
| def forward(self, inputBatch): | |
| batch = self.layer1(inputBatch) | |
| batch = self.layer2(batch) | |
| batch = self.layer3(batch) | |
| batch = self.layer4(batch) | |
| outputBatch = self.avgpool(batch) | |
| return outputBatch | |
| class VisualFrontend(nn.Module): | |
| """ | |
| A visual feature extraction module. Generates a 512-dim feature vector per video frame. | |
| Architecture: A 3D convolution block followed by an 18-layer ResNet. | |
| """ | |
| def __init__(self, args): | |
| super(VisualFrontend, self).__init__() | |
| self.args =args | |
| if self.args.causal: | |
| padding = (4,3,3) | |
| else: | |
| padding = (2,3,3) | |
| self.frontend3D = nn.Sequential( | |
| nn.Conv3d(1, 64, kernel_size=(5,7,7), stride=(1,2,2), padding=padding, bias=False), | |
| nn.BatchNorm3d(64, momentum=0.01, eps=0.001), | |
| nn.ReLU(), | |
| nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)) | |
| ) | |
| self.resnet = ResNet() | |
| return | |
| def forward(self, batch): | |
| batchsize = batch.shape[0] | |
| batch = self.frontend3D[0](batch) | |
| if self.args.causal: | |
| batch = batch[:,:,:-4,:,:] | |
| batch = self.frontend3D[1](batch) | |
| batch = self.frontend3D[2](batch) | |
| batch = self.frontend3D[3](batch) | |
| batch = batch.transpose(1, 2) | |
| batch = batch.reshape(batch.shape[0]*batch.shape[1], batch.shape[2], batch.shape[3], batch.shape[4]) | |
| outputBatch = self.resnet(batch) | |
| outputBatch = outputBatch.reshape(batchsize, -1, 512) | |
| outputBatch = outputBatch.transpose(1 ,2) | |
| return outputBatch | |
| class VisualConv1D(nn.Module): | |
| def __init__(self, args, V=256, H=512, kernel_size=3, dilation=1): | |
| super(VisualConv1D, self).__init__() | |
| self.args =args | |
| self.relu_0 = nn.ReLU() | |
| self.norm_0 = nn.BatchNorm1d(V) | |
| self.conv1x1 = nn.Conv1d(V, H, 1, bias=False) | |
| self.relu = nn.ReLU() | |
| self.norm_1 = nn.BatchNorm1d(H) | |
| self.dconv_pad = (dilation * (kernel_size - 1)) // 2 if not self.args.causal else ( | |
| dilation * (kernel_size - 1)) | |
| self.dsconv = nn.Conv1d(H, H, kernel_size, stride=1, padding=self.dconv_pad, dilation=1, groups=H) | |
| self.prelu = nn.PReLU() | |
| self.norm_2 = nn.BatchNorm1d(H) | |
| self.pw_conv = nn.Conv1d(H, V, 1, bias=False) | |
| def forward(self, x): | |
| out = self.relu_0(x) | |
| out = self.norm_0(out) | |
| out = self.conv1x1(out) | |
| out = self.relu(out) | |
| out = self.norm_1(out) | |
| out = self.dsconv(out) | |
| if self.args.causal: | |
| out = out[:, :, :-self.dconv_pad] | |
| out = self.prelu(out) | |
| out = self.norm_2(out) | |
| out = self.pw_conv(out) | |
| return out + x | |