|
|
|
from mmcv.cnn import ConvModule, build_plugin_layer |
|
from mmcv.runner import BaseModule, Sequential |
|
|
|
import mmocr.utils as utils |
|
from mmocr.models.builder import BACKBONES |
|
from mmocr.models.textrecog.layers import BasicBlock |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ResNet(BaseModule): |
|
""" |
|
Args: |
|
in_channels (int): Number of channels of input image tensor. |
|
stem_channels (list[int]): List of channels in each stem layer. E.g., |
|
[64, 128] stands for 64 and 128 channels in the first and second |
|
stem layers. |
|
block_cfgs (dict): Configs of block |
|
arch_layers (list[int]): List of Block number for each stage. |
|
arch_channels (list[int]): List of channels for each stage. |
|
strides (Sequence[int] | Sequence[tuple]): Strides of the first block |
|
of each stage. |
|
out_indices (None | Sequence[int]): Indices of output stages. If not |
|
specified, only the last stage will be returned. |
|
stage_plugins (dict): Configs of stage plugins |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
stem_channels, |
|
block_cfgs, |
|
arch_layers, |
|
arch_channels, |
|
strides, |
|
out_indices=None, |
|
plugins=None, |
|
init_cfg=[ |
|
dict(type='Xavier', layer='Conv2d'), |
|
dict(type='Constant', val=1, layer='BatchNorm2d'), |
|
]): |
|
super().__init__(init_cfg=init_cfg) |
|
assert isinstance(in_channels, int) |
|
assert isinstance(stem_channels, int) or utils.is_type_list( |
|
stem_channels, int) |
|
assert utils.is_type_list(arch_layers, int) |
|
assert utils.is_type_list(arch_channels, int) |
|
assert utils.is_type_list(strides, tuple) or utils.is_type_list( |
|
strides, int) |
|
assert len(arch_layers) == len(arch_channels) == len(strides) |
|
assert out_indices is None or isinstance(out_indices, (list, tuple)) |
|
|
|
self.out_indices = out_indices |
|
self._make_stem_layer(in_channels, stem_channels) |
|
self.num_stages = len(arch_layers) |
|
self.use_plugins = False |
|
self.arch_channels = arch_channels |
|
self.res_layers = [] |
|
if plugins is not None: |
|
self.plugin_ahead_names = [] |
|
self.plugin_after_names = [] |
|
self.use_plugins = True |
|
for i, num_blocks in enumerate(arch_layers): |
|
stride = strides[i] |
|
channel = arch_channels[i] |
|
|
|
if self.use_plugins: |
|
self._make_stage_plugins(plugins, stage_idx=i) |
|
|
|
res_layer = self._make_layer( |
|
block_cfgs=block_cfgs, |
|
inplanes=self.inplanes, |
|
planes=channel, |
|
blocks=num_blocks, |
|
stride=stride, |
|
) |
|
self.inplanes = channel |
|
layer_name = f'layer{i + 1}' |
|
self.add_module(layer_name, res_layer) |
|
self.res_layers.append(layer_name) |
|
|
|
def _make_layer(self, block_cfgs, inplanes, planes, blocks, stride): |
|
layers = [] |
|
downsample = None |
|
block_cfgs_ = block_cfgs.copy() |
|
if isinstance(stride, int): |
|
stride = (stride, stride) |
|
|
|
if stride[0] != 1 or stride[1] != 1 or inplanes != planes: |
|
downsample = ConvModule( |
|
inplanes, |
|
planes, |
|
1, |
|
stride, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=None) |
|
|
|
if block_cfgs_['type'] == 'BasicBlock': |
|
block = BasicBlock |
|
block_cfgs_.pop('type') |
|
else: |
|
raise ValueError('{} not implement yet'.format(block['type'])) |
|
|
|
layers.append( |
|
block( |
|
inplanes, |
|
planes, |
|
stride=stride, |
|
downsample=downsample, |
|
**block_cfgs_)) |
|
inplanes = planes |
|
for _ in range(1, blocks): |
|
layers.append(block(inplanes, planes, **block_cfgs_)) |
|
|
|
return Sequential(*layers) |
|
|
|
def _make_stem_layer(self, in_channels, stem_channels): |
|
if isinstance(stem_channels, int): |
|
stem_channels = [stem_channels] |
|
stem_layers = [] |
|
for _, channels in enumerate(stem_channels): |
|
stem_layer = ConvModule( |
|
in_channels, |
|
channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU')) |
|
in_channels = channels |
|
stem_layers.append(stem_layer) |
|
self.stem_layers = Sequential(*stem_layers) |
|
self.inplanes = stem_channels[-1] |
|
|
|
def _make_stage_plugins(self, plugins, stage_idx): |
|
"""Make plugins for ResNet ``stage_idx`` th stage. |
|
|
|
Currently we support inserting ``nn.Maxpooling``, |
|
``mmcv.cnn.Convmodule``into the backbone. Originally designed |
|
for ResNet31-like architectures. |
|
|
|
Examples: |
|
>>> plugins=[ |
|
... dict(cfg=dict(type="Maxpooling", arg=(2,2)), |
|
... stages=(True, True, False, False), |
|
... position='before_stage'), |
|
... dict(cfg=dict(type="Maxpooling", arg=(2,1)), |
|
... stages=(False, False, True, Flase), |
|
... position='before_stage'), |
|
... dict(cfg=dict( |
|
... type='ConvModule', |
|
... kernel_size=3, |
|
... stride=1, |
|
... padding=1, |
|
... norm_cfg=dict(type='BN'), |
|
... act_cfg=dict(type='ReLU')), |
|
... stages=(True, True, True, True), |
|
... position='after_stage')] |
|
|
|
Suppose ``stage_idx=1``, the structure of stage would be: |
|
|
|
.. code-block:: none |
|
|
|
Maxpooling -> A set of Basicblocks -> ConvModule |
|
|
|
Args: |
|
plugins (list[dict]): List of plugins cfg to build. |
|
stage_idx (int): Index of stage to build |
|
|
|
Returns: |
|
list[dict]: Plugins for current stage |
|
""" |
|
in_channels = self.arch_channels[stage_idx] |
|
self.plugin_ahead_names.append([]) |
|
self.plugin_after_names.append([]) |
|
for plugin in plugins: |
|
plugin = plugin.copy() |
|
stages = plugin.pop('stages', None) |
|
position = plugin.pop('position', None) |
|
assert stages is None or len(stages) == self.num_stages |
|
if stages[stage_idx]: |
|
if position == 'before_stage': |
|
name, layer = build_plugin_layer( |
|
plugin['cfg'], |
|
f'_before_stage_{stage_idx+1}', |
|
in_channels=in_channels, |
|
out_channels=in_channels) |
|
self.plugin_ahead_names[stage_idx].append(name) |
|
self.add_module(name, layer) |
|
elif position == 'after_stage': |
|
name, layer = build_plugin_layer( |
|
plugin['cfg'], |
|
f'_after_stage_{stage_idx+1}', |
|
in_channels=in_channels, |
|
out_channels=in_channels) |
|
self.plugin_after_names[stage_idx].append(name) |
|
self.add_module(name, layer) |
|
else: |
|
raise ValueError('uncorrect plugin position') |
|
|
|
def forward_plugin(self, x, plugin_name): |
|
out = x |
|
for name in plugin_name: |
|
out = getattr(self, name)(x) |
|
return out |
|
|
|
def forward(self, x): |
|
""" |
|
Args: x (Tensor): Image tensor of shape :math:`(N, 3, H, W)`. |
|
|
|
Returns: |
|
Tensor or list[Tensor]: Feature tensor. It can be a list of |
|
feature outputs at specific layers if ``out_indices`` is specified. |
|
""" |
|
x = self.stem_layers(x) |
|
|
|
outs = [] |
|
for i, layer_name in enumerate(self.res_layers): |
|
res_layer = getattr(self, layer_name) |
|
if not self.use_plugins: |
|
x = res_layer(x) |
|
if self.out_indices and i in self.out_indices: |
|
outs.append(x) |
|
else: |
|
x = self.forward_plugin(x, self.plugin_ahead_names[i]) |
|
x = res_layer(x) |
|
x = self.forward_plugin(x, self.plugin_after_names[i]) |
|
if self.out_indices and i in self.out_indices: |
|
outs.append(x) |
|
|
|
return tuple(outs) if self.out_indices else x |
|
|