|
|
|
import torch.nn as nn |
|
from mmcv.runner import BaseModule, Sequential |
|
|
|
import mmocr.utils as utils |
|
from mmocr.models.builder import BACKBONES |
|
from mmocr.models.textrecog.layers import BasicBlock |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ResNet31OCR(BaseModule): |
|
"""Implement ResNet backbone for text recognition, modified from |
|
`ResNet <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
Args: |
|
base_channels (int): Number of channels of input image tensor. |
|
layers (list[int]): List of BasicBlock number for each stage. |
|
channels (list[int]): List of out_channels of Conv2d layer. |
|
out_indices (None | Sequence[int]): Indices of output stages. |
|
stage4_pool_cfg (dict): Dictionary to construct and configure |
|
pooling layer in stage 4. |
|
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage. |
|
""" |
|
|
|
def __init__(self, |
|
base_channels=3, |
|
layers=[1, 2, 5, 3], |
|
channels=[64, 128, 256, 256, 512, 512, 512], |
|
out_indices=None, |
|
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)), |
|
last_stage_pool=False, |
|
init_cfg=[ |
|
dict(type='Kaiming', layer='Conv2d'), |
|
dict(type='Uniform', layer='BatchNorm2d') |
|
]): |
|
super().__init__(init_cfg=init_cfg) |
|
assert isinstance(base_channels, int) |
|
assert utils.is_type_list(layers, int) |
|
assert utils.is_type_list(channels, int) |
|
assert out_indices is None or isinstance(out_indices, (list, tuple)) |
|
assert isinstance(last_stage_pool, bool) |
|
|
|
self.out_indices = out_indices |
|
self.last_stage_pool = last_stage_pool |
|
|
|
|
|
self.conv1_1 = nn.Conv2d( |
|
base_channels, channels[0], kernel_size=3, stride=1, padding=1) |
|
self.bn1_1 = nn.BatchNorm2d(channels[0]) |
|
self.relu1_1 = nn.ReLU(inplace=True) |
|
|
|
self.conv1_2 = nn.Conv2d( |
|
channels[0], channels[1], kernel_size=3, stride=1, padding=1) |
|
self.bn1_2 = nn.BatchNorm2d(channels[1]) |
|
self.relu1_2 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.pool2 = nn.MaxPool2d( |
|
kernel_size=2, stride=2, padding=0, ceil_mode=True) |
|
self.block2 = self._make_layer(channels[1], channels[2], layers[0]) |
|
self.conv2 = nn.Conv2d( |
|
channels[2], channels[2], kernel_size=3, stride=1, padding=1) |
|
self.bn2 = nn.BatchNorm2d(channels[2]) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.pool3 = nn.MaxPool2d( |
|
kernel_size=2, stride=2, padding=0, ceil_mode=True) |
|
self.block3 = self._make_layer(channels[2], channels[3], layers[1]) |
|
self.conv3 = nn.Conv2d( |
|
channels[3], channels[3], kernel_size=3, stride=1, padding=1) |
|
self.bn3 = nn.BatchNorm2d(channels[3]) |
|
self.relu3 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.pool4 = nn.MaxPool2d(padding=0, ceil_mode=True, **stage4_pool_cfg) |
|
self.block4 = self._make_layer(channels[3], channels[4], layers[2]) |
|
self.conv4 = nn.Conv2d( |
|
channels[4], channels[4], kernel_size=3, stride=1, padding=1) |
|
self.bn4 = nn.BatchNorm2d(channels[4]) |
|
self.relu4 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.pool5 = None |
|
if self.last_stage_pool: |
|
self.pool5 = nn.MaxPool2d( |
|
kernel_size=2, stride=2, padding=0, ceil_mode=True) |
|
self.block5 = self._make_layer(channels[4], channels[5], layers[3]) |
|
self.conv5 = nn.Conv2d( |
|
channels[5], channels[5], kernel_size=3, stride=1, padding=1) |
|
self.bn5 = nn.BatchNorm2d(channels[5]) |
|
self.relu5 = nn.ReLU(inplace=True) |
|
|
|
def _make_layer(self, input_channels, output_channels, blocks): |
|
layers = [] |
|
for _ in range(blocks): |
|
downsample = None |
|
if input_channels != output_channels: |
|
downsample = Sequential( |
|
nn.Conv2d( |
|
input_channels, |
|
output_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias=False), |
|
nn.BatchNorm2d(output_channels), |
|
) |
|
layers.append( |
|
BasicBlock( |
|
input_channels, output_channels, downsample=downsample)) |
|
input_channels = output_channels |
|
|
|
return Sequential(*layers) |
|
|
|
def forward(self, x): |
|
|
|
x = self.conv1_1(x) |
|
x = self.bn1_1(x) |
|
x = self.relu1_1(x) |
|
|
|
x = self.conv1_2(x) |
|
x = self.bn1_2(x) |
|
x = self.relu1_2(x) |
|
|
|
outs = [] |
|
for i in range(4): |
|
layer_index = i + 2 |
|
pool_layer = getattr(self, f'pool{layer_index}') |
|
block_layer = getattr(self, f'block{layer_index}') |
|
conv_layer = getattr(self, f'conv{layer_index}') |
|
bn_layer = getattr(self, f'bn{layer_index}') |
|
relu_layer = getattr(self, f'relu{layer_index}') |
|
|
|
if pool_layer is not None: |
|
x = pool_layer(x) |
|
x = block_layer(x) |
|
x = conv_layer(x) |
|
x = bn_layer(x) |
|
x = relu_layer(x) |
|
|
|
outs.append(x) |
|
|
|
if self.out_indices is not None: |
|
return tuple([outs[i] for i in self.out_indices]) |
|
|
|
return x |
|
|