|
|
|
import torch.nn as nn |
|
from mmcv.runner import BaseModule, Sequential |
|
|
|
import mmocr.utils as utils |
|
from mmocr.models.builder import BACKBONES |
|
from mmocr.models.textrecog.layers import BasicBlock |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ResNetABI(BaseModule): |
|
"""Implement ResNet backbone for text recognition, modified from `ResNet. |
|
|
|
<https://arxiv.org/pdf/1512.03385.pdf>`_ and |
|
`<https://github.com/FangShancheng/ABINet>`_ |
|
|
|
Args: |
|
in_channels (int): Number of channels of input image tensor. |
|
stem_channels (int): Number of stem channels. |
|
base_channels (int): Number of base channels. |
|
arch_settings (list[int]): List of BasicBlock number for each stage. |
|
strides (Sequence[int]): Strides of the first block of each stage. |
|
out_indices (None | Sequence[int]): Indices of output stages. If not |
|
specified, only the last stage will be returned. |
|
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=3, |
|
stem_channels=32, |
|
base_channels=32, |
|
arch_settings=[3, 4, 6, 6, 3], |
|
strides=[2, 1, 2, 1, 1], |
|
out_indices=None, |
|
last_stage_pool=False, |
|
init_cfg=[ |
|
dict(type='Xavier', layer='Conv2d'), |
|
dict(type='Constant', val=1, layer='BatchNorm2d') |
|
]): |
|
super().__init__(init_cfg=init_cfg) |
|
assert isinstance(in_channels, int) |
|
assert isinstance(stem_channels, int) |
|
assert utils.is_type_list(arch_settings, int) |
|
assert utils.is_type_list(strides, int) |
|
assert len(arch_settings) == len(strides) |
|
assert out_indices is None or isinstance(out_indices, (list, tuple)) |
|
assert isinstance(last_stage_pool, bool) |
|
|
|
self.out_indices = out_indices |
|
self.last_stage_pool = last_stage_pool |
|
self.block = BasicBlock |
|
self.inplanes = stem_channels |
|
|
|
self._make_stem_layer(in_channels, stem_channels) |
|
|
|
self.res_layers = [] |
|
planes = base_channels |
|
for i, num_blocks in enumerate(arch_settings): |
|
stride = strides[i] |
|
res_layer = self._make_layer( |
|
block=self.block, |
|
inplanes=self.inplanes, |
|
planes=planes, |
|
blocks=num_blocks, |
|
stride=stride) |
|
self.inplanes = planes * self.block.expansion |
|
planes *= 2 |
|
layer_name = f'layer{i + 1}' |
|
self.add_module(layer_name, res_layer) |
|
self.res_layers.append(layer_name) |
|
|
|
def _make_layer(self, block, inplanes, planes, blocks, stride=1): |
|
layers = [] |
|
downsample = None |
|
if stride != 1 or inplanes != planes: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(inplanes, planes, 1, stride, bias=False), |
|
nn.BatchNorm2d(planes), |
|
) |
|
layers.append( |
|
block( |
|
inplanes, |
|
planes, |
|
use_conv1x1=True, |
|
stride=stride, |
|
downsample=downsample)) |
|
inplanes = planes |
|
for _ in range(1, blocks): |
|
layers.append(block(inplanes, planes, use_conv1x1=True)) |
|
|
|
return Sequential(*layers) |
|
|
|
def _make_stem_layer(self, in_channels, stem_channels): |
|
self.conv1 = nn.Conv2d( |
|
in_channels, stem_channels, kernel_size=3, stride=1, padding=1) |
|
self.bn1 = nn.BatchNorm2d(stem_channels) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): Image tensor of shape :math:`(N, 3, H, W)`. |
|
|
|
Returns: |
|
Tensor or list[Tensor]: Feature tensor. Its shape depends on |
|
ResNetABI's config. It can be a list of feature outputs at specific |
|
layers if ``out_indices`` is specified. |
|
""" |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu1(x) |
|
|
|
outs = [] |
|
for i, layer_name in enumerate(self.res_layers): |
|
res_layer = getattr(self, layer_name) |
|
x = res_layer(x) |
|
if self.out_indices and i in self.out_indices: |
|
outs.append(x) |
|
|
|
return tuple(outs) if self.out_indices else x |
|
|