|
|
|
import json |
|
import os.path as osp |
|
import tempfile |
|
|
|
import numpy as np |
|
|
|
from mmocr.datasets.text_det_dataset import TextDetDataset |
|
|
|
|
|
def _create_dummy_ann_file(ann_file): |
|
ann_info1 = { |
|
'file_name': |
|
'sample1.jpg', |
|
'height': |
|
640, |
|
'width': |
|
640, |
|
'annotations': [{ |
|
'iscrowd': 0, |
|
'category_id': 1, |
|
'bbox': [50, 70, 80, 100], |
|
'segmentation': [[50, 70, 80, 70, 80, 100, 50, 100]] |
|
}, { |
|
'iscrowd': |
|
1, |
|
'category_id': |
|
1, |
|
'bbox': [120, 140, 200, 200], |
|
'segmentation': [[120, 140, 200, 140, 200, 200, 120, 200]] |
|
}] |
|
} |
|
|
|
with open(ann_file, 'w') as fw: |
|
fw.write(json.dumps(ann_info1) + '\n') |
|
|
|
|
|
def _create_dummy_loader(): |
|
loader = dict( |
|
type='HardDiskLoader', |
|
repeat=1, |
|
parser=dict( |
|
type='LineJsonParser', |
|
keys=['file_name', 'height', 'width', 'annotations'])) |
|
return loader |
|
|
|
|
|
def test_detect_dataset(): |
|
tmp_dir = tempfile.TemporaryDirectory() |
|
|
|
ann_file = osp.join(tmp_dir.name, 'fake_data.txt') |
|
_create_dummy_ann_file(ann_file) |
|
|
|
|
|
loader = _create_dummy_loader() |
|
dataset = TextDetDataset(ann_file, loader, pipeline=[]) |
|
|
|
|
|
img_ann_info = dataset.data_infos[0] |
|
ann = dataset._parse_anno_info(img_ann_info['annotations']) |
|
print(ann['bboxes']) |
|
assert np.allclose(ann['bboxes'], [[50., 70., 80., 100.]]) |
|
assert np.allclose(ann['labels'], [1]) |
|
assert np.allclose(ann['bboxes_ignore'], [[120, 140, 200, 200]]) |
|
assert np.allclose(ann['masks'], [[[50, 70, 80, 70, 80, 100, 50, 100]]]) |
|
assert np.allclose(ann['masks_ignore'], |
|
[[[120, 140, 200, 140, 200, 200, 120, 200]]]) |
|
|
|
tmp_dir.cleanup() |
|
|
|
|
|
pipeline_results = dataset.prepare_train_img(0) |
|
assert np.allclose(pipeline_results['bbox_fields'], []) |
|
assert np.allclose(pipeline_results['mask_fields'], []) |
|
assert np.allclose(pipeline_results['seg_fields'], []) |
|
expect_img_info = {'filename': 'sample1.jpg', 'height': 640, 'width': 640} |
|
assert pipeline_results['img_info'] == expect_img_info |
|
|
|
|
|
metrics = 'hmean-iou' |
|
results = [{'boundary_result': [[50, 70, 80, 70, 80, 100, 50, 100, 1]]}] |
|
eval_res = dataset.evaluate(results, metrics) |
|
|
|
assert eval_res['hmean-iou:hmean'] == 1 |
|
|