|
|
|
import copy |
|
import unittest.mock as mock |
|
|
|
import numpy as np |
|
import pytest |
|
import torchvision.transforms as TF |
|
from mmdet.core import BitmapMasks, PolygonMasks |
|
from PIL import Image |
|
|
|
import mmocr.datasets.pipelines.transforms as transforms |
|
|
|
|
|
@mock.patch('%s.transforms.np.random.random_sample' % __name__) |
|
@mock.patch('%s.transforms.np.random.randint' % __name__) |
|
def test_random_crop_instances(mock_randint, mock_sample): |
|
|
|
img_gt = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 1, 1], |
|
[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]]) |
|
|
|
mock_sample.side_effect = [1] |
|
rci = transforms.RandomCropInstances(6, instance_key='gt_kernels') |
|
(i, j) = rci.sample_offset(img_gt, (5, 5)) |
|
assert i == 0 |
|
assert j == 0 |
|
|
|
|
|
|
|
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels') |
|
mock_sample.side_effect = [1] |
|
mock_randint.side_effect = [1, 2] |
|
(i, j) = rci.sample_offset(img_gt, (5, 5)) |
|
assert i == 1 |
|
assert j == 2 |
|
|
|
mock_sample.side_effect = [1] |
|
mock_randint.side_effect = [1, 2] |
|
rci = transforms.RandomCropInstances(5, instance_key='gt_kernels') |
|
(i, j) = rci.sample_offset(img_gt, (5, 5)) |
|
assert i == 0 |
|
assert j == 0 |
|
|
|
|
|
|
|
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels') |
|
mock_sample.side_effect = [0.1] |
|
mock_randint.side_effect = [1, 1] |
|
(i, j) = rci.sample_offset(img_gt, (5, 5)) |
|
assert i == 1 |
|
assert j == 1 |
|
|
|
|
|
|
|
img = img_gt |
|
offset = [0, 0] |
|
target = [6, 6] |
|
crop = rci.crop_img(img, offset, target) |
|
assert np.allclose(img, crop[0]) |
|
assert np.allclose(crop[1], [0, 0, 5, 5]) |
|
|
|
target = [3, 2] |
|
crop = rci.crop_img(img, offset, target) |
|
assert np.allclose(np.array([[0, 0], [0, 0], [0, 0]]), crop[0]) |
|
assert np.allclose(crop[1], [0, 0, 2, 3]) |
|
|
|
|
|
canvas_box = np.array([2, 3, 5, 5]) |
|
bboxes = np.array([[2, 3, 4, 4], [0, 0, 1, 1], [1, 2, 4, 4], |
|
[0, 0, 10, 10]]) |
|
kept_bboxes, kept_idx = rci.crop_bboxes(bboxes, canvas_box) |
|
assert np.allclose(kept_bboxes, |
|
np.array([[0, 0, 2, 1], [0, 0, 2, 1], [0, 0, 3, 2]])) |
|
assert kept_idx == [0, 2, 3] |
|
|
|
bboxes = np.array([[10, 10, 11, 11], [0, 0, 1, 1]]) |
|
kept_bboxes, kept_idx = rci.crop_bboxes(bboxes, canvas_box) |
|
assert kept_bboxes.size == 0 |
|
assert kept_bboxes.shape == (0, 4) |
|
assert len(kept_idx) == 0 |
|
|
|
|
|
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels') |
|
results = {} |
|
gt_kernels = [img_gt, img_gt.copy()] |
|
results['gt_kernels'] = BitmapMasks(gt_kernels, 5, 5) |
|
results['img'] = img_gt.copy() |
|
results['mask_fields'] = ['gt_kernels'] |
|
mock_sample.side_effect = [0.1] |
|
mock_randint.side_effect = [1, 1] |
|
output = rci(results) |
|
target = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]]) |
|
assert output['img_shape'] == (3, 3) |
|
|
|
assert np.allclose(output['img'], target) |
|
|
|
assert np.allclose(output['gt_kernels'].masks[0], target) |
|
assert np.allclose(output['gt_kernels'].masks[1], target) |
|
|
|
|
|
@mock.patch('%s.transforms.np.random.random_sample' % __name__) |
|
def test_scale_aspect_jitter(mock_random): |
|
img_scale = [(3000, 1000)] |
|
ratio_range = (0.5, 1.5) |
|
aspect_ratio_range = (1, 1) |
|
multiscale_mode = 'value' |
|
long_size_bound = 2000 |
|
short_size_bound = 640 |
|
resize_type = 'long_short_bound' |
|
keep_ratio = False |
|
jitter = transforms.ScaleAspectJitter( |
|
img_scale=img_scale, |
|
ratio_range=ratio_range, |
|
aspect_ratio_range=aspect_ratio_range, |
|
multiscale_mode=multiscale_mode, |
|
long_size_bound=long_size_bound, |
|
short_size_bound=short_size_bound, |
|
resize_type=resize_type, |
|
keep_ratio=keep_ratio) |
|
mock_random.side_effect = [0.5] |
|
|
|
|
|
|
|
result = jitter.sample_from_range([100, 200]) |
|
assert result == 150 |
|
|
|
|
|
results = {} |
|
results['img'] = np.zeros((4000, 1000)) |
|
mock_random.side_effect = [0.5, 1] |
|
jitter._random_scale(results) |
|
|
|
|
|
assert results['scale'] == (650, 2600) |
|
|
|
|
|
@mock.patch('%s.transforms.np.random.random_sample' % __name__) |
|
def test_random_rotate(mock_random): |
|
|
|
mock_random.side_effect = [0.5, 0] |
|
results = {} |
|
img = np.random.rand(5, 5) |
|
results['img'] = img.copy() |
|
results['mask_fields'] = ['masks'] |
|
gt_kernels = [results['img'].copy()] |
|
results['masks'] = BitmapMasks(gt_kernels, 5, 5) |
|
|
|
rotater = transforms.RandomRotateTextDet() |
|
|
|
results = rotater(results) |
|
assert np.allclose(results['img'], img) |
|
assert np.allclose(results['masks'].masks, img) |
|
|
|
|
|
def test_color_jitter(): |
|
img = np.ones((64, 256, 3), dtype=np.uint8) |
|
results = {'img': img} |
|
|
|
pt_official_color_jitter = TF.ColorJitter() |
|
output1 = pt_official_color_jitter(img) |
|
|
|
color_jitter = transforms.ColorJitter() |
|
output2 = color_jitter(results) |
|
|
|
assert np.allclose(output1, output2['img']) |
|
|
|
|
|
def test_affine_jitter(): |
|
img = np.ones((64, 256, 3), dtype=np.uint8) |
|
results = {'img': img} |
|
|
|
pt_official_affine_jitter = TF.RandomAffine(degrees=0) |
|
output1 = pt_official_affine_jitter(Image.fromarray(img)) |
|
|
|
affine_jitter = transforms.AffineJitter( |
|
degrees=0, |
|
translate=None, |
|
scale=None, |
|
shear=None, |
|
resample=False, |
|
fillcolor=0) |
|
output2 = affine_jitter(results) |
|
|
|
assert np.allclose(np.array(output1), output2['img']) |
|
|
|
|
|
def test_random_scale(): |
|
h, w, c = 100, 100, 3 |
|
img = np.ones((h, w, c), dtype=np.uint8) |
|
results = {'img': img, 'img_shape': (h, w, c)} |
|
|
|
polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.]) |
|
|
|
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2])) |
|
results['mask_fields'] = ['gt_masks'] |
|
|
|
size = 100 |
|
scale = (2., 2.) |
|
random_scaler = transforms.RandomScaling(size=size, scale=scale) |
|
|
|
results = random_scaler(results) |
|
|
|
out_img = results['img'] |
|
out_poly = results['gt_masks'].masks[0][0] |
|
gt_poly = polygon * 2 |
|
|
|
assert np.allclose(out_img.shape, (2 * h, 2 * w, c)) |
|
assert np.allclose(out_poly, gt_poly) |
|
|
|
|
|
@mock.patch('%s.transforms.np.random.randint' % __name__) |
|
def test_random_crop_flip(mock_randint): |
|
img = np.ones((10, 10, 3), dtype=np.uint8) |
|
img[0, 0, :] = 0 |
|
results = {'img': img, 'img_shape': img.shape} |
|
|
|
polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.]) |
|
|
|
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2])) |
|
results['gt_masks_ignore'] = PolygonMasks([], *(img.shape[:2])) |
|
results['mask_fields'] = ['gt_masks', 'gt_masks_ignore'] |
|
|
|
crop_ratio = 1.1 |
|
iter_num = 3 |
|
random_crop_fliper = transforms.RandomCropFlip( |
|
crop_ratio=crop_ratio, iter_num=iter_num) |
|
|
|
|
|
pad_ratio = 0.1 |
|
h, w = img.shape[:2] |
|
pad_h = int(h * pad_ratio) |
|
pad_w = int(w * pad_ratio) |
|
all_polys = results['gt_masks'].masks |
|
h_axis, w_axis = random_crop_fliper.generate_crop_target( |
|
img, all_polys, pad_h, pad_w) |
|
|
|
assert np.allclose(h_axis, (0, 11)) |
|
assert np.allclose(w_axis, (0, 11)) |
|
|
|
|
|
polygon = np.array([1., 1., 1., 9., 9., 9., 9., 1.]) |
|
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2])) |
|
results['gt_masks_ignore'] = PolygonMasks([[polygon]], *(img.shape[:2])) |
|
|
|
mock_randint.side_effect = [0, 1, 2] |
|
results = random_crop_fliper(results) |
|
|
|
out_img = results['img'] |
|
out_poly = results['gt_masks'].masks[0][0] |
|
gt_img = img |
|
gt_poly = polygon |
|
|
|
assert np.allclose(out_img, gt_img) |
|
assert np.allclose(out_poly, gt_poly) |
|
|
|
|
|
@mock.patch('%s.transforms.np.random.random_sample' % __name__) |
|
@mock.patch('%s.transforms.np.random.randint' % __name__) |
|
def test_random_crop_poly_instances(mock_randint, mock_sample): |
|
results = {} |
|
img = np.zeros((30, 30, 3)) |
|
poly_masks = PolygonMasks([[ |
|
np.array([5., 5., 25., 5., 25., 10., 5., 10.]) |
|
], [np.array([5., 20., 25., 20., 25., 25., 5., 25.])]], 30, 30) |
|
results['img'] = img |
|
results['gt_masks'] = poly_masks |
|
results['gt_masks_ignore'] = PolygonMasks([], 30, 30) |
|
results['mask_fields'] = ['gt_masks', 'gt_masks_ignore'] |
|
results['gt_labels'] = [1, 1] |
|
rcpi = transforms.RandomCropPolyInstances( |
|
instance_key='gt_masks', crop_ratio=1.0, min_side_ratio=0.3) |
|
|
|
|
|
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 0, 0, 15] |
|
crop_box = rcpi.sample_crop_box((30, 30), results) |
|
assert np.allclose(np.array(crop_box), np.array([0, 0, 30, 15])) |
|
|
|
|
|
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 15, 0, 30] |
|
mock_sample.side_effect = [0.1] |
|
output = rcpi(results) |
|
target = np.array([5., 5., 25., 5., 25., 10., 5., 10.]) |
|
assert len(output['gt_masks']) == 1 |
|
assert len(output['gt_masks_ignore']) == 0 |
|
assert np.allclose(output['gt_masks'].masks[0][0], target) |
|
assert output['img'].shape == (15, 30, 3) |
|
|
|
|
|
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 15, 0, 30] |
|
mock_sample.side_effect = [0.1] |
|
rcpi = transforms.RandomCropPolyInstances( |
|
instance_key='gt_masks_ignore', crop_ratio=1.0, min_side_ratio=0.3) |
|
results['img'] = img |
|
results['gt_masks'] = poly_masks |
|
output = rcpi(results) |
|
assert len(output['gt_masks']) == 2 |
|
assert np.allclose(output['gt_masks'].masks[0][0], poly_masks.masks[0][0]) |
|
assert np.allclose(output['gt_masks'].masks[1][0], poly_masks.masks[1][0]) |
|
assert output['img'].shape == (30, 30, 3) |
|
|
|
|
|
@mock.patch('%s.transforms.np.random.random_sample' % __name__) |
|
def test_random_rotate_poly_instances(mock_sample): |
|
results = {} |
|
img = np.zeros((30, 30, 3)) |
|
poly_masks = PolygonMasks( |
|
[[np.array([10., 10., 20., 10., 20., 20., 10., 20.])]], 30, 30) |
|
results['img'] = img |
|
results['gt_masks'] = poly_masks |
|
results['mask_fields'] = ['gt_masks'] |
|
rrpi = transforms.RandomRotatePolyInstances(rotate_ratio=1.0, max_angle=90) |
|
|
|
mock_sample.side_effect = [0., 1.] |
|
output = rrpi(results) |
|
assert np.allclose(output['gt_masks'].masks[0][0], |
|
np.array([10., 20., 10., 10., 20., 10., 20., 20.])) |
|
assert output['img'].shape == (30, 30, 3) |
|
|
|
|
|
@mock.patch('%s.transforms.np.random.random_sample' % __name__) |
|
def test_square_resize_pad(mock_sample): |
|
results = {} |
|
img = np.zeros((15, 30, 3)) |
|
polygon = np.array([10., 5., 20., 5., 20., 10., 10., 10.]) |
|
poly_masks = PolygonMasks([[polygon]], 15, 30) |
|
results['img'] = img |
|
results['gt_masks'] = poly_masks |
|
results['mask_fields'] = ['gt_masks'] |
|
srp = transforms.SquareResizePad(target_size=40, pad_ratio=0.5) |
|
|
|
|
|
mock_sample.side_effect = [0.] |
|
output = srp(results) |
|
target = 4. / 3 * polygon |
|
target[1::2] += 10. |
|
assert np.allclose(output['gt_masks'].masks[0][0], target) |
|
assert output['img'].shape == (40, 40, 3) |
|
|
|
|
|
results['img'] = img |
|
results['gt_masks'] = poly_masks |
|
mock_sample.side_effect = [1.] |
|
output = srp(results) |
|
target = polygon.copy() |
|
target[::2] *= 4. / 3 |
|
target[1::2] *= 8. / 3 |
|
assert np.allclose(output['gt_masks'].masks[0][0], target) |
|
assert output['img'].shape == (40, 40, 3) |
|
|
|
|
|
def test_pyramid_rescale(): |
|
img = np.random.randint(0, 256, size=(128, 100, 3), dtype=np.uint8) |
|
x = {'img': copy.deepcopy(img)} |
|
f = transforms.PyramidRescale() |
|
results = f(x) |
|
assert results['img'].shape == (128, 100, 3) |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
transforms.PyramidRescale(base_shape=(128)) |
|
with pytest.raises(AssertionError): |
|
transforms.PyramidRescale(base_shape=128) |
|
with pytest.raises(AssertionError): |
|
transforms.PyramidRescale(factor=[]) |
|
with pytest.raises(AssertionError): |
|
transforms.PyramidRescale(randomize_factor=[]) |
|
with pytest.raises(AssertionError): |
|
f({}) |
|
|
|
|
|
f_derandomized = transforms.PyramidRescale( |
|
factor=0, randomize_factor=False) |
|
results = f_derandomized({'img': copy.deepcopy(img)}) |
|
assert np.all(results['img'] == img) |
|
|