|
|
|
import copy |
|
from os.path import dirname, exists, join |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
|
|
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300), |
|
num_items=None): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): Input batch dimensions. |
|
|
|
num_items (None | list[int]): Specifies the number of boxes |
|
for each batch item. |
|
""" |
|
|
|
(N, C, H, W) = input_shape |
|
rng = np.random.RandomState(0) |
|
imgs = rng.rand(*input_shape) |
|
|
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
} for _ in range(N)] |
|
relations = [torch.randn(10, 10, 5) for _ in range(N)] |
|
texts = [torch.ones(10, 16) for _ in range(N)] |
|
gt_bboxes = [torch.Tensor([[2, 2, 4, 4]]).expand(10, 4) for _ in range(N)] |
|
gt_labels = [torch.ones(10, 11).long() for _ in range(N)] |
|
|
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True), |
|
'img_metas': img_metas, |
|
'relations': relations, |
|
'texts': texts, |
|
'gt_bboxes': gt_bboxes, |
|
'gt_labels': gt_labels |
|
} |
|
return mm_inputs |
|
|
|
|
|
def _get_config_directory(): |
|
"""Find the predefined detector config directory.""" |
|
try: |
|
|
|
repo_dpath = dirname(dirname(dirname(__file__))) |
|
except NameError: |
|
|
|
import mmocr |
|
repo_dpath = dirname(dirname(mmocr.__file__)) |
|
config_dpath = join(repo_dpath, 'configs') |
|
if not exists(config_dpath): |
|
raise Exception('Cannot find config path') |
|
return config_dpath |
|
|
|
|
|
def _get_config_module(fname): |
|
"""Load a configuration as a python module.""" |
|
from mmcv import Config |
|
config_dpath = _get_config_directory() |
|
config_fpath = join(config_dpath, fname) |
|
config_mod = Config.fromfile(config_fpath) |
|
return config_mod |
|
|
|
|
|
def _get_detector_cfg(fname): |
|
"""Grab configs necessary to create a detector. |
|
|
|
These are deep copied to allow for safe modification of parameters without |
|
influencing other tests. |
|
""" |
|
config = _get_config_module(fname) |
|
config.model.class_list = None |
|
model = copy.deepcopy(config.model) |
|
return model |
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [ |
|
'kie/sdmgr/sdmgr_novisual_60e_wildreceipt.py', |
|
'kie/sdmgr/sdmgr_unet16_60e_wildreceipt.py' |
|
]) |
|
def test_sdmgr_pipeline(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
|
|
input_shape = (1, 3, 128, 128) |
|
|
|
mm_inputs = _demo_mm_inputs(0, input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
relations = mm_inputs.pop('relations') |
|
texts = mm_inputs.pop('texts') |
|
gt_bboxes = mm_inputs.pop('gt_bboxes') |
|
gt_labels = mm_inputs.pop('gt_labels') |
|
|
|
|
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
relations=relations, |
|
texts=texts, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
batch_results = [] |
|
for idx in range(len(img_metas)): |
|
result = detector.forward( |
|
imgs[idx:idx + 1], |
|
None, |
|
return_loss=False, |
|
relations=[relations[idx]], |
|
texts=[texts[idx]], |
|
gt_bboxes=[gt_bboxes[idx]]) |
|
batch_results.append(result) |
|
|
|
|
|
results = {'nodes': torch.randn(1, 3)} |
|
boxes = [[1, 1, 2, 1, 2, 2, 1, 2]] |
|
img = np.random.rand(5, 5, 3) |
|
detector.show_result(img, results, boxes) |
|
|