|
|
|
import argparse |
|
import glob |
|
import os.path as osp |
|
from functools import partial |
|
|
|
import mmcv |
|
import numpy as np |
|
from shapely.geometry import Polygon |
|
|
|
from mmocr.utils import convert_annotations, list_from_file |
|
|
|
|
|
def collect_files(img_dir, gt_dir): |
|
"""Collect all images and their corresponding groundtruth files. |
|
|
|
Args: |
|
img_dir(str): The image directory |
|
gt_dir(str): The groundtruth directory |
|
|
|
Returns: |
|
files(list): The list of tuples (img_file, groundtruth_file) |
|
""" |
|
assert isinstance(img_dir, str) |
|
assert img_dir |
|
assert isinstance(gt_dir, str) |
|
assert gt_dir |
|
|
|
|
|
|
|
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG'] |
|
imgs_list = [] |
|
for suffix in suffixes: |
|
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix))) |
|
|
|
files = [] |
|
for img_file in imgs_list: |
|
gt_file = gt_dir + '/gt_' + osp.splitext( |
|
osp.basename(img_file))[0] + '.txt' |
|
files.append((img_file, gt_file)) |
|
assert len(files), f'No images found in {img_dir}' |
|
print(f'Loaded {len(files)} images from {img_dir}') |
|
|
|
return files |
|
|
|
|
|
def collect_annotations(files, dataset, nproc=1): |
|
"""Collect the annotation information. |
|
|
|
Args: |
|
files(list): The list of tuples (image_file, groundtruth_file) |
|
dataset(str): The dataset name, icdar2015 or icdar2017 |
|
nproc(int): The number of process to collect annotations |
|
|
|
Returns: |
|
images(list): The list of image information dicts |
|
""" |
|
assert isinstance(files, list) |
|
assert isinstance(dataset, str) |
|
assert dataset |
|
assert isinstance(nproc, int) |
|
|
|
load_img_info_with_dataset = partial(load_img_info, dataset=dataset) |
|
if nproc > 1: |
|
images = mmcv.track_parallel_progress( |
|
load_img_info_with_dataset, files, nproc=nproc) |
|
else: |
|
images = mmcv.track_progress(load_img_info_with_dataset, files) |
|
|
|
return images |
|
|
|
|
|
def load_img_info(files, dataset): |
|
"""Load the information of one image. |
|
|
|
Args: |
|
files(tuple): The tuple of (img_file, groundtruth_file) |
|
dataset(str): Dataset name, icdar2015 or icdar2017 |
|
|
|
Returns: |
|
img_info(dict): The dict of the img and annotation information |
|
""" |
|
assert isinstance(files, tuple) |
|
assert isinstance(dataset, str) |
|
assert dataset |
|
|
|
img_file, gt_file = files |
|
|
|
img = mmcv.imread(img_file, 'unchanged') |
|
|
|
if dataset == 'icdar2017': |
|
gt_list = list_from_file(gt_file) |
|
elif dataset == 'icdar2015': |
|
gt_list = list_from_file(gt_file, encoding='utf-8-sig') |
|
else: |
|
raise NotImplementedError(f'Not support {dataset}') |
|
|
|
anno_info = [] |
|
for line in gt_list: |
|
|
|
|
|
line = line.strip() |
|
strs = line.split(',') |
|
category_id = 1 |
|
xy = [int(x) for x in strs[0:8]] |
|
coordinates = np.array(xy).reshape(-1, 2) |
|
polygon = Polygon(coordinates) |
|
iscrowd = 0 |
|
|
|
if (dataset == 'icdar2015' |
|
and strs[8] == '###') or (dataset == 'icdar2017' |
|
and strs[9] == '###'): |
|
iscrowd = 1 |
|
print('ignore text') |
|
|
|
area = polygon.area |
|
|
|
min_x, min_y, max_x, max_y = polygon.bounds |
|
bbox = [min_x, min_y, max_x - min_x, max_y - min_y] |
|
|
|
anno = dict( |
|
iscrowd=iscrowd, |
|
category_id=category_id, |
|
bbox=bbox, |
|
area=area, |
|
segmentation=[xy]) |
|
anno_info.append(anno) |
|
split_name = osp.basename(osp.dirname(img_file)) |
|
img_info = dict( |
|
|
|
file_name=osp.join(split_name, osp.basename(img_file)), |
|
height=img.shape[0], |
|
width=img.shape[1], |
|
anno_info=anno_info, |
|
segm_file=osp.join(split_name, osp.basename(gt_file))) |
|
return img_info |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert Icdar2015 or Icdar2017 annotations to COCO format' |
|
) |
|
parser.add_argument('icdar_path', help='icdar root path') |
|
parser.add_argument('-o', '--out-dir', help='output path') |
|
parser.add_argument( |
|
'-d', '--dataset', required=True, help='icdar2017 or icdar2015') |
|
parser.add_argument( |
|
'--split-list', |
|
nargs='+', |
|
help='a list of splits. e.g., "--split-list training test"') |
|
|
|
parser.add_argument( |
|
'--nproc', default=1, type=int, help='number of process') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
icdar_path = args.icdar_path |
|
out_dir = args.out_dir if args.out_dir else icdar_path |
|
mmcv.mkdir_or_exist(out_dir) |
|
|
|
img_dir = osp.join(icdar_path, 'imgs') |
|
gt_dir = osp.join(icdar_path, 'annotations') |
|
|
|
set_name = {} |
|
for split in args.split_list: |
|
set_name.update({split: 'instances_' + split + '.json'}) |
|
assert osp.exists(osp.join(img_dir, split)) |
|
|
|
for split, json_name in set_name.items(): |
|
print(f'Converting {split} into {json_name}') |
|
with mmcv.Timer(print_tmpl='It takes {}s to convert icdar annotation'): |
|
files = collect_files( |
|
osp.join(img_dir, split), osp.join(gt_dir, split)) |
|
image_infos = collect_annotations( |
|
files, args.dataset, nproc=args.nproc) |
|
convert_annotations(image_infos, osp.join(out_dir, json_name)) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|