|
|
|
import argparse |
|
import glob |
|
import os |
|
import os.path as osp |
|
import re |
|
|
|
import mmcv |
|
import numpy as np |
|
import scipy.io as scio |
|
import yaml |
|
from shapely.geometry import Polygon |
|
|
|
from mmocr.datasets.pipelines.crop import crop_img |
|
from mmocr.utils.fileio import list_to_file |
|
|
|
|
|
def collect_files(img_dir, gt_dir, split): |
|
"""Collect all images and their corresponding groundtruth files. |
|
|
|
Args: |
|
img_dir(str): The image directory |
|
gt_dir(str): The groundtruth directory |
|
split(str): The split of dataset. Namely: training or test |
|
Returns: |
|
files(list): The list of tuples (img_file, groundtruth_file) |
|
""" |
|
assert isinstance(img_dir, str) |
|
assert img_dir |
|
assert isinstance(gt_dir, str) |
|
assert gt_dir |
|
|
|
|
|
|
|
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG'] |
|
|
|
|
|
imgs_list = [] |
|
for suffix in suffixes: |
|
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix))) |
|
|
|
imgs_list = sorted(imgs_list) |
|
ann_list = sorted( |
|
[osp.join(gt_dir, gt_file) for gt_file in os.listdir(gt_dir)]) |
|
|
|
files = [(img_file, gt_file) |
|
for (img_file, gt_file) in zip(imgs_list, ann_list)] |
|
assert len(files), f'No images found in {img_dir}' |
|
print(f'Loaded {len(files)} images from {img_dir}') |
|
|
|
return files |
|
|
|
|
|
def collect_annotations(files, nproc=1): |
|
"""Collect the annotation information. |
|
|
|
Args: |
|
files(list): The list of tuples (image_file, groundtruth_file) |
|
nproc(int): The number of process to collect annotations |
|
Returns: |
|
images(list): The list of image information dicts |
|
""" |
|
assert isinstance(files, list) |
|
assert isinstance(nproc, int) |
|
|
|
if nproc > 1: |
|
images = mmcv.track_parallel_progress( |
|
load_img_info, files, nproc=nproc) |
|
else: |
|
images = mmcv.track_progress(load_img_info, files) |
|
|
|
return images |
|
|
|
|
|
def get_contours_mat(gt_path): |
|
"""Get the contours and words for each ground_truth mat file. |
|
|
|
Args: |
|
gt_path(str): The relative path of the ground_truth mat file |
|
Returns: |
|
contours(list[lists]): A list of lists of contours |
|
for the text instances |
|
words(list[list]): A list of lists of words (string) |
|
for the text instances |
|
""" |
|
assert isinstance(gt_path, str) |
|
|
|
contours = [] |
|
words = [] |
|
data = scio.loadmat(gt_path) |
|
data_polygt = data['polygt'] |
|
|
|
for i, lines in enumerate(data_polygt): |
|
X = np.array(lines[1]) |
|
Y = np.array(lines[3]) |
|
|
|
point_num = len(X[0]) |
|
word = lines[4] |
|
if len(word) == 0: |
|
word = '???' |
|
else: |
|
word = word[0] |
|
|
|
if word == '#': |
|
word = '###' |
|
continue |
|
|
|
words.append(word) |
|
|
|
arr = np.concatenate([X, Y]).T |
|
contour = [] |
|
for i in range(point_num): |
|
contour.append(arr[i][0]) |
|
contour.append(arr[i][1]) |
|
contours.append(np.asarray(contour)) |
|
|
|
return contours, words |
|
|
|
|
|
def load_mat_info(img_info, gt_file): |
|
"""Load the information of one ground truth in .mat format. |
|
|
|
Args: |
|
img_info(dict): The dict of only the image information |
|
gt_file(str): The relative path of the ground_truth mat |
|
file for one image |
|
Returns: |
|
img_info(dict): The dict of the img and annotation information |
|
""" |
|
assert isinstance(img_info, dict) |
|
assert isinstance(gt_file, str) |
|
|
|
contours, words = get_contours_mat(gt_file) |
|
anno_info = [] |
|
for contour, word in zip(contours, words): |
|
if contour.shape[0] == 2: |
|
continue |
|
coordinates = np.array(contour).reshape(-1, 2) |
|
polygon = Polygon(coordinates) |
|
|
|
|
|
min_x, min_y, max_x, max_y = polygon.bounds |
|
bbox = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y] |
|
anno = dict(word=word, bbox=bbox) |
|
anno_info.append(anno) |
|
|
|
img_info.update(anno_info=anno_info) |
|
return img_info |
|
|
|
|
|
def process_line(line, contours, words): |
|
"""Get the contours and words by processing each line in the gt file. |
|
|
|
Args: |
|
line(str): The line in gt file containing annotation info |
|
contours(list[lists]): A list of lists of contours |
|
for the text instances |
|
words(list[list]): A list of lists of words (string) |
|
for the text instances |
|
Returns: |
|
contours(list[lists]): A list of lists of contours |
|
for the text instances |
|
words(list[list]): A list of lists of words (string) |
|
for the text instances |
|
""" |
|
|
|
line = '{' + line.replace('[[', '[').replace(']]', ']') + '}' |
|
ann_dict = re.sub('([0-9]) +([0-9])', r'\1,\2', line) |
|
ann_dict = re.sub('([0-9]) +([ 0-9])', r'\1,\2', ann_dict) |
|
ann_dict = re.sub('([0-9]) -([0-9])', r'\1,-\2', ann_dict) |
|
ann_dict = ann_dict.replace("[u',']", "[u'#']") |
|
ann_dict = yaml.safe_load(ann_dict) |
|
|
|
X = np.array([ann_dict['x']]) |
|
Y = np.array([ann_dict['y']]) |
|
|
|
if len(ann_dict['transcriptions']) == 0: |
|
word = '???' |
|
else: |
|
word = ann_dict['transcriptions'][0] |
|
if len(ann_dict['transcriptions']) > 1: |
|
for ann_word in ann_dict['transcriptions'][1:]: |
|
word += ',' + ann_word |
|
word = str(eval(word)) |
|
words.append(word) |
|
|
|
point_num = len(X[0]) |
|
|
|
arr = np.concatenate([X, Y]).T |
|
contour = [] |
|
for i in range(point_num): |
|
contour.append(arr[i][0]) |
|
contour.append(arr[i][1]) |
|
contours.append(np.asarray(contour)) |
|
|
|
return contours, words |
|
|
|
|
|
def get_contours_txt(gt_path): |
|
"""Get the contours and words for each ground_truth txt file. |
|
|
|
Args: |
|
gt_path(str): The relative path of the ground_truth mat file |
|
Returns: |
|
contours(list[lists]): A list of lists of contours |
|
for the text instances |
|
words(list[list]): A list of lists of words (string) |
|
for the text instances |
|
""" |
|
assert isinstance(gt_path, str) |
|
|
|
contours = [] |
|
words = [] |
|
|
|
with open(gt_path, 'r') as f: |
|
tmp_line = '' |
|
for idx, line in enumerate(f): |
|
line = line.strip() |
|
if idx == 0: |
|
tmp_line = line |
|
continue |
|
if not line.startswith('x:'): |
|
tmp_line += ' ' + line |
|
continue |
|
else: |
|
complete_line = tmp_line |
|
tmp_line = line |
|
contours, words = process_line(complete_line, contours, words) |
|
|
|
if tmp_line != '': |
|
contours, words = process_line(tmp_line, contours, words) |
|
|
|
for word in words: |
|
|
|
if word == '#': |
|
word = '###' |
|
continue |
|
|
|
return contours, words |
|
|
|
|
|
def load_txt_info(gt_file, img_info): |
|
"""Load the information of one ground truth in .txt format. |
|
|
|
Args: |
|
img_info(dict): The dict of only the image information |
|
gt_file(str): The relative path of the ground_truth mat |
|
file for one image |
|
Returns: |
|
img_info(dict): The dict of the img and annotation information |
|
""" |
|
|
|
contours, words = get_contours_txt(gt_file) |
|
anno_info = [] |
|
for contour, word in zip(contours, words): |
|
if contour.shape[0] == 2: |
|
continue |
|
coordinates = np.array(contour).reshape(-1, 2) |
|
polygon = Polygon(coordinates) |
|
|
|
|
|
min_x, min_y, max_x, max_y = polygon.bounds |
|
bbox = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y] |
|
anno = dict(word=word, bbox=bbox) |
|
anno_info.append(anno) |
|
|
|
img_info.update(anno_info=anno_info) |
|
return img_info |
|
|
|
|
|
def generate_ann(root_path, split, image_infos): |
|
"""Generate cropped annotations and label txt file. |
|
|
|
Args: |
|
root_path(str): The relative path of the totaltext file |
|
split(str): The split of dataset. Namely: training or test |
|
image_infos(list[dict]): A list of dicts of the img and |
|
annotation information |
|
""" |
|
|
|
dst_image_root = osp.join(root_path, 'dst_imgs', split) |
|
if split == 'training': |
|
dst_label_file = osp.join(root_path, 'train_label.txt') |
|
elif split == 'test': |
|
dst_label_file = osp.join(root_path, 'test_label.txt') |
|
os.makedirs(dst_image_root, exist_ok=True) |
|
|
|
lines = [] |
|
for image_info in image_infos: |
|
index = 1 |
|
src_img_path = osp.join(root_path, 'imgs', image_info['file_name']) |
|
image = mmcv.imread(src_img_path) |
|
src_img_root = osp.splitext(image_info['file_name'])[0].split('/')[1] |
|
|
|
for anno in image_info['anno_info']: |
|
word = anno['word'] |
|
dst_img = crop_img(image, anno['bbox']) |
|
|
|
|
|
if min(dst_img.shape) == 0: |
|
continue |
|
|
|
dst_img_name = f'{src_img_root}_{index}.png' |
|
index += 1 |
|
dst_img_path = osp.join(dst_image_root, dst_img_name) |
|
mmcv.imwrite(dst_img, dst_img_path) |
|
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} ' |
|
f'{word}') |
|
list_to_file(dst_label_file, lines) |
|
|
|
|
|
def load_img_info(files): |
|
"""Load the information of one image. |
|
|
|
Args: |
|
files(tuple): The tuple of (img_file, groundtruth_file) |
|
Returns: |
|
img_info(dict): The dict of the img and annotation information |
|
""" |
|
assert isinstance(files, tuple) |
|
|
|
img_file, gt_file = files |
|
|
|
img = mmcv.imread(img_file, 'unchanged') |
|
|
|
split_name = osp.basename(osp.dirname(img_file)) |
|
img_info = dict( |
|
|
|
file_name=osp.join(split_name, osp.basename(img_file)), |
|
height=img.shape[0], |
|
width=img.shape[1], |
|
|
|
segm_file=osp.join(split_name, osp.basename(gt_file))) |
|
|
|
if osp.splitext(gt_file)[1] == '.mat': |
|
img_info = load_mat_info(img_info, gt_file) |
|
elif osp.splitext(gt_file)[1] == '.txt': |
|
img_info = load_txt_info(gt_file, img_info) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img_info |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert totaltext annotations to COCO format') |
|
parser.add_argument('root_path', help='totaltext root path') |
|
parser.add_argument('-o', '--out-dir', help='output path') |
|
parser.add_argument( |
|
'--split-list', |
|
nargs='+', |
|
help='a list of splits. e.g., "--split_list training test"') |
|
|
|
parser.add_argument( |
|
'--nproc', default=1, type=int, help='number of process') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
root_path = args.root_path |
|
out_dir = args.out_dir if args.out_dir else root_path |
|
mmcv.mkdir_or_exist(out_dir) |
|
|
|
img_dir = osp.join(root_path, 'imgs') |
|
gt_dir = osp.join(root_path, 'annotations') |
|
|
|
set_name = {} |
|
for split in args.split_list: |
|
set_name.update({split: 'instances_' + split + '.json'}) |
|
assert osp.exists(osp.join(img_dir, split)) |
|
|
|
for split, json_name in set_name.items(): |
|
print(f'Converting {split} into {json_name}') |
|
with mmcv.Timer( |
|
print_tmpl='It takes {}s to convert totaltext annotation'): |
|
files = collect_files( |
|
osp.join(img_dir, split), osp.join(gt_dir, split), split) |
|
image_infos = collect_annotations(files, nproc=args.nproc) |
|
generate_ann(root_path, split, image_infos) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|