|
|
|
|
|
import os.path as osp |
|
from argparse import ArgumentParser |
|
|
|
import mmcv |
|
from mmcv.utils import ProgressBar |
|
|
|
from mmocr.apis import init_detector, model_inference |
|
from mmocr.models import build_detector |
|
from mmocr.utils import list_from_file, list_to_file |
|
|
|
|
|
def gen_target_path(target_root_path, src_name, suffix): |
|
"""Gen target file path. |
|
|
|
Args: |
|
target_root_path (str): The target root path. |
|
src_name (str): The source file name. |
|
suffix (str): The suffix of target file. |
|
""" |
|
assert isinstance(target_root_path, str) |
|
assert isinstance(src_name, str) |
|
assert isinstance(suffix, str) |
|
|
|
file_name = osp.split(src_name)[-1] |
|
name = osp.splitext(file_name)[0] |
|
return osp.join(target_root_path, name + suffix) |
|
|
|
|
|
def save_results(result, out_dir, img_name, score_thr=0.3): |
|
"""Save result of detected bounding boxes (quadrangle or polygon) to txt |
|
file. |
|
|
|
Args: |
|
result (dict): Text Detection result for one image. |
|
img_name (str): Image file name. |
|
out_dir (str): Dir of txt files to save detected results. |
|
score_thr (float, optional): Score threshold to filter bboxes. |
|
""" |
|
assert 'boundary_result' in result |
|
assert score_thr > 0 and score_thr < 1 |
|
|
|
txt_file = gen_target_path(out_dir, img_name, '.txt') |
|
valid_boundary_res = [ |
|
res for res in result['boundary_result'] if res[-1] > score_thr |
|
] |
|
lines = [ |
|
','.join([str(round(x)) for x in row]) for row in valid_boundary_res |
|
] |
|
list_to_file(txt_file, lines) |
|
|
|
|
|
def main(): |
|
parser = ArgumentParser() |
|
parser.add_argument('img_root', type=str, help='Image root path') |
|
parser.add_argument('img_list', type=str, help='Image path list file') |
|
parser.add_argument('config', type=str, help='Config file') |
|
parser.add_argument('checkpoint', type=str, help='Checkpoint file') |
|
parser.add_argument( |
|
'--score-thr', type=float, default=0.5, help='Bbox score threshold') |
|
parser.add_argument( |
|
'--out-dir', |
|
type=str, |
|
default='./results', |
|
help='Dir to save ' |
|
'visualize images ' |
|
'and bbox') |
|
parser.add_argument( |
|
'--device', default='cuda:0', help='Device used for inference.') |
|
args = parser.parse_args() |
|
|
|
assert 0 < args.score_thr < 1 |
|
|
|
|
|
model = init_detector(args.config, args.checkpoint, device=args.device) |
|
if hasattr(model, 'module'): |
|
model = model.module |
|
|
|
|
|
out_vis_dir = osp.join(args.out_dir, 'out_vis_dir') |
|
mmcv.mkdir_or_exist(out_vis_dir) |
|
out_txt_dir = osp.join(args.out_dir, 'out_txt_dir') |
|
mmcv.mkdir_or_exist(out_txt_dir) |
|
|
|
lines = list_from_file(args.img_list) |
|
progressbar = ProgressBar(task_num=len(lines)) |
|
for line in lines: |
|
progressbar.update() |
|
img_path = osp.join(args.img_root, line.strip()) |
|
if not osp.exists(img_path): |
|
raise FileNotFoundError(img_path) |
|
|
|
result = model_inference(model, img_path) |
|
img_name = osp.basename(img_path) |
|
|
|
save_results(result, out_txt_dir, img_name, score_thr=args.score_thr) |
|
|
|
out_file = osp.join(out_vis_dir, img_name) |
|
kwargs_dict = { |
|
'score_thr': args.score_thr, |
|
'show': False, |
|
'out_file': out_file |
|
} |
|
model.show_result(img_path, result, **kwargs_dict) |
|
|
|
print(f'\nInference done, and results saved in {args.out_dir}\n') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|