|
|
|
import argparse |
|
|
|
import cv2 |
|
import torch |
|
|
|
from mmocr.apis import init_detector, model_inference |
|
from mmocr.datasets import build_dataset |
|
from mmocr.models import build_detector |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='MMDetection webcam demo.') |
|
parser.add_argument('config', help='Test config file path.') |
|
parser.add_argument('checkpoint', help='Checkpoint file.') |
|
parser.add_argument( |
|
'--device', type=str, default='cuda:0', help='CPU/CUDA device option.') |
|
parser.add_argument( |
|
'--camera-id', type=int, default=0, help='Camera device id.') |
|
parser.add_argument( |
|
'--score-thr', type=float, default=0.5, help='Bbox score threshold.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
device = torch.device(args.device) |
|
|
|
model = init_detector(args.config, args.checkpoint, device=device) |
|
|
|
camera = cv2.VideoCapture(args.camera_id) |
|
|
|
print('Press "Esc", "q" or "Q" to exit.') |
|
while True: |
|
ret_val, img = camera.read() |
|
result = model_inference(model, img) |
|
|
|
ch = cv2.waitKey(1) |
|
if ch == 27 or ch == ord('q') or ch == ord('Q'): |
|
break |
|
|
|
model.show_result( |
|
img, result, score_thr=args.score_thr, wait_time=1, show=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|