|
|
|
import numpy as np |
|
from shapely.geometry import Polygon as plg |
|
|
|
import mmocr.utils as utils |
|
|
|
|
|
def ignore_pred(pred_boxes, gt_ignored_index, gt_polys, precision_thr): |
|
"""Ignore the predicted box if it hits any ignored ground truth. |
|
|
|
Args: |
|
pred_boxes (list[ndarray or list]): The predicted boxes of one image. |
|
gt_ignored_index (list[int]): The ignored ground truth index list. |
|
gt_polys (list[Polygon]): The polygon list of one image. |
|
precision_thr (float): The precision threshold. |
|
|
|
Returns: |
|
pred_polys (list[Polygon]): The predicted polygon list. |
|
pred_points (list[list]): The predicted box list represented |
|
by point sequences. |
|
pred_ignored_index (list[int]): The ignored text index list. |
|
""" |
|
|
|
assert isinstance(pred_boxes, list) |
|
assert isinstance(gt_ignored_index, list) |
|
assert isinstance(gt_polys, list) |
|
assert 0 <= precision_thr <= 1 |
|
|
|
pred_polys = [] |
|
pred_points = [] |
|
pred_ignored_index = [] |
|
|
|
gt_ignored_num = len(gt_ignored_index) |
|
|
|
for box_id, box in enumerate(pred_boxes): |
|
poly = points2polygon(box) |
|
pred_polys.append(poly) |
|
pred_points.append(box) |
|
|
|
if gt_ignored_num < 1: |
|
continue |
|
|
|
|
|
|
|
for ignored_box_id in gt_ignored_index: |
|
ignored_box = gt_polys[ignored_box_id] |
|
inter_area = poly_intersection(poly, ignored_box) |
|
area = poly.area |
|
precision = 0 if area == 0 else inter_area / area |
|
if precision > precision_thr: |
|
pred_ignored_index.append(box_id) |
|
break |
|
|
|
return pred_polys, pred_points, pred_ignored_index |
|
|
|
|
|
def compute_hmean(accum_hit_recall, accum_hit_prec, gt_num, pred_num): |
|
"""Compute hmean given hit number, ground truth number and prediction |
|
number. |
|
|
|
Args: |
|
accum_hit_recall (int|float): Accumulated hits for computing recall. |
|
accum_hit_prec (int|float): Accumulated hits for computing precision. |
|
gt_num (int): Ground truth number. |
|
pred_num (int): Prediction number. |
|
|
|
Returns: |
|
recall (float): The recall value. |
|
precision (float): The precision value. |
|
hmean (float): The hmean value. |
|
""" |
|
|
|
assert isinstance(accum_hit_recall, (float, int)) |
|
assert isinstance(accum_hit_prec, (float, int)) |
|
|
|
assert isinstance(gt_num, int) |
|
assert isinstance(pred_num, int) |
|
assert accum_hit_recall >= 0.0 |
|
assert accum_hit_prec >= 0.0 |
|
assert gt_num >= 0.0 |
|
assert pred_num >= 0.0 |
|
|
|
if gt_num == 0: |
|
recall = 1.0 |
|
precision = 0.0 if pred_num > 0 else 1.0 |
|
else: |
|
recall = float(accum_hit_recall) / gt_num |
|
precision = 0.0 if pred_num == 0 else float(accum_hit_prec) / pred_num |
|
|
|
denom = recall + precision |
|
|
|
hmean = 0.0 if denom == 0 else (2.0 * precision * recall / denom) |
|
|
|
return recall, precision, hmean |
|
|
|
|
|
def box2polygon(box): |
|
"""Convert box to polygon. |
|
|
|
Args: |
|
box (ndarray or list): A ndarray or a list of shape (4) |
|
that indicates 2 points. |
|
|
|
Returns: |
|
polygon (Polygon): A polygon object. |
|
""" |
|
if isinstance(box, list): |
|
box = np.array(box) |
|
|
|
assert isinstance(box, np.ndarray) |
|
assert box.size == 4 |
|
boundary = np.array( |
|
[box[0], box[1], box[2], box[1], box[2], box[3], box[0], box[3]]) |
|
|
|
point_mat = boundary.reshape([-1, 2]) |
|
return plg(point_mat) |
|
|
|
|
|
def points2polygon(points): |
|
"""Convert k points to 1 polygon. |
|
|
|
Args: |
|
points (ndarray or list): A ndarray or a list of shape (2k) |
|
that indicates k points. |
|
|
|
Returns: |
|
polygon (Polygon): A polygon object. |
|
""" |
|
if isinstance(points, list): |
|
points = np.array(points) |
|
|
|
assert isinstance(points, np.ndarray) |
|
assert (points.size % 2 == 0) and (points.size >= 8) |
|
|
|
point_mat = points.reshape([-1, 2]) |
|
return plg(point_mat) |
|
|
|
|
|
def poly_make_valid(poly): |
|
"""Convert a potentially invalid polygon to a valid one by eliminating |
|
self-crossing or self-touching parts. |
|
|
|
Args: |
|
poly (Polygon): A polygon needed to be converted. |
|
|
|
Returns: |
|
A valid polygon. |
|
""" |
|
return poly if poly.is_valid else poly.buffer(0) |
|
|
|
|
|
def poly_intersection(poly_det, poly_gt, invalid_ret=None, return_poly=False): |
|
"""Calculate the intersection area between two polygon. |
|
|
|
Args: |
|
poly_det (Polygon): A polygon predicted by detector. |
|
poly_gt (Polygon): A gt polygon. |
|
invalid_ret (None|float|int): The return value when the invalid polygon |
|
exists. If it is not specified, the function allows the computation |
|
to proceed with invalid polygons by cleaning the their |
|
self-touching or self-crossing parts. |
|
return_poly (bool): Whether to return the polygon of the intersection |
|
area. |
|
|
|
Returns: |
|
intersection_area (float): The intersection area between two polygons. |
|
poly_obj (Polygon, optional): The Polygon object of the intersection |
|
area. Set as `None` if the input is invalid. |
|
""" |
|
assert isinstance(poly_det, plg) |
|
assert isinstance(poly_gt, plg) |
|
assert invalid_ret is None or isinstance(invalid_ret, float) or \ |
|
isinstance(invalid_ret, int) |
|
|
|
if invalid_ret is None: |
|
poly_det = poly_make_valid(poly_det) |
|
poly_gt = poly_make_valid(poly_gt) |
|
|
|
poly_obj = None |
|
area = invalid_ret |
|
if poly_det.is_valid and poly_gt.is_valid: |
|
poly_obj = poly_det.intersection(poly_gt) |
|
area = poly_obj.area |
|
return (area, poly_obj) if return_poly else area |
|
|
|
|
|
def poly_union(poly_det, poly_gt, invalid_ret=None, return_poly=False): |
|
"""Calculate the union area between two polygon. |
|
Args: |
|
poly_det (Polygon): A polygon predicted by detector. |
|
poly_gt (Polygon): A gt polygon. |
|
invalid_ret (None|float|int): The return value when the invalid polygon |
|
exists. If it is not specified, the function allows the computation |
|
to proceed with invalid polygons by cleaning the their |
|
self-touching or self-crossing parts. |
|
return_poly (bool): Whether to return the polygon of the intersection |
|
area. |
|
|
|
Returns: |
|
union_area (float): The union area between two polygons. |
|
poly_obj (Polygon|MultiPolygon, optional): The Polygon or MultiPolygon |
|
object of the union of the inputs. The type of object depends on |
|
whether they intersect or not. Set as `None` if the input is |
|
invalid. |
|
""" |
|
assert isinstance(poly_det, plg) |
|
assert isinstance(poly_gt, plg) |
|
assert invalid_ret is None or isinstance(invalid_ret, float) or \ |
|
isinstance(invalid_ret, int) |
|
|
|
if invalid_ret is None: |
|
poly_det = poly_make_valid(poly_det) |
|
poly_gt = poly_make_valid(poly_gt) |
|
|
|
poly_obj = None |
|
area = invalid_ret |
|
if poly_det.is_valid and poly_gt.is_valid: |
|
poly_obj = poly_det.union(poly_gt) |
|
area = poly_obj.area |
|
return (area, poly_obj) if return_poly else area |
|
|
|
|
|
def boundary_iou(src, target, zero_division=0): |
|
"""Calculate the IOU between two boundaries. |
|
|
|
Args: |
|
src (list): Source boundary. |
|
target (list): Target boundary. |
|
zero_division (int|float): The return value when invalid |
|
boundary exists. |
|
|
|
Returns: |
|
iou (float): The iou between two boundaries. |
|
""" |
|
assert utils.valid_boundary(src, False) |
|
assert utils.valid_boundary(target, False) |
|
src_poly = points2polygon(src) |
|
target_poly = points2polygon(target) |
|
|
|
return poly_iou(src_poly, target_poly, zero_division=zero_division) |
|
|
|
|
|
def poly_iou(poly_det, poly_gt, zero_division=0): |
|
"""Calculate the IOU between two polygons. |
|
|
|
Args: |
|
poly_det (Polygon): A polygon predicted by detector. |
|
poly_gt (Polygon): A gt polygon. |
|
zero_division (int|float): The return value when invalid |
|
polygon exists. |
|
|
|
Returns: |
|
iou (float): The IOU between two polygons. |
|
""" |
|
assert isinstance(poly_det, plg) |
|
assert isinstance(poly_gt, plg) |
|
area_inters = poly_intersection(poly_det, poly_gt) |
|
area_union = poly_union(poly_det, poly_gt) |
|
return area_inters / area_union if area_union != 0 else zero_division |
|
|
|
|
|
def one2one_match_ic13(gt_id, det_id, recall_mat, precision_mat, recall_thr, |
|
precision_thr): |
|
"""One-to-One match gt and det with icdar2013 standards. |
|
|
|
Args: |
|
gt_id (int): The ground truth id index. |
|
det_id (int): The detection result id index. |
|
recall_mat (ndarray): `gt_num x det_num` matrix with element (i,j) |
|
being the recall ratio of gt i to det j. |
|
precision_mat (ndarray): `gt_num x det_num` matrix with element (i,j) |
|
being the precision ratio of gt i to det j. |
|
recall_thr (float): The recall threshold. |
|
precision_thr (float): The precision threshold. |
|
Returns: |
|
True|False: Whether the gt and det are matched. |
|
""" |
|
assert isinstance(gt_id, int) |
|
assert isinstance(det_id, int) |
|
assert isinstance(recall_mat, np.ndarray) |
|
assert isinstance(precision_mat, np.ndarray) |
|
assert 0 <= recall_thr <= 1 |
|
assert 0 <= precision_thr <= 1 |
|
|
|
cont = 0 |
|
for i in range(recall_mat.shape[1]): |
|
if recall_mat[gt_id, |
|
i] > recall_thr and precision_mat[gt_id, |
|
i] > precision_thr: |
|
cont += 1 |
|
if cont != 1: |
|
return False |
|
|
|
cont = 0 |
|
for i in range(recall_mat.shape[0]): |
|
if recall_mat[i, det_id] > recall_thr and precision_mat[ |
|
i, det_id] > precision_thr: |
|
cont += 1 |
|
if cont != 1: |
|
return False |
|
|
|
if recall_mat[gt_id, det_id] > recall_thr and precision_mat[ |
|
gt_id, det_id] > precision_thr: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def one2many_match_ic13(gt_id, recall_mat, precision_mat, recall_thr, |
|
precision_thr, gt_match_flag, det_match_flag, |
|
det_ignored_index): |
|
"""One-to-Many match gt and detections with icdar2013 standards. |
|
|
|
Args: |
|
gt_id (int): gt index. |
|
recall_mat (ndarray): `gt_num x det_num` matrix with element (i,j) |
|
being the recall ratio of gt i to det j. |
|
precision_mat (ndarray): `gt_num x det_num` matrix with element (i,j) |
|
being the precision ratio of gt i to det j. |
|
recall_thr (float): The recall threshold. |
|
precision_thr (float): The precision threshold. |
|
gt_match_flag (ndarray): An array indicates each gt matched already. |
|
det_match_flag (ndarray): An array indicates each box has been |
|
matched already or not. |
|
det_ignored_index (list): A list indicates each detection box can be |
|
ignored or not. |
|
|
|
Returns: |
|
tuple (True|False, list): The first indicates the gt is matched or not; |
|
the second is the matched detection ids. |
|
""" |
|
assert isinstance(gt_id, int) |
|
assert isinstance(recall_mat, np.ndarray) |
|
assert isinstance(precision_mat, np.ndarray) |
|
assert 0 <= recall_thr <= 1 |
|
assert 0 <= precision_thr <= 1 |
|
|
|
assert isinstance(gt_match_flag, list) |
|
assert isinstance(det_match_flag, list) |
|
assert isinstance(det_ignored_index, list) |
|
|
|
many_sum = 0. |
|
det_ids = [] |
|
for det_id in range(recall_mat.shape[1]): |
|
if gt_match_flag[gt_id] == 0 and det_match_flag[ |
|
det_id] == 0 and det_id not in det_ignored_index: |
|
if precision_mat[gt_id, det_id] >= precision_thr: |
|
many_sum += recall_mat[gt_id, det_id] |
|
det_ids.append(det_id) |
|
if many_sum >= recall_thr: |
|
return True, det_ids |
|
return False, [] |
|
|
|
|
|
def many2one_match_ic13(det_id, recall_mat, precision_mat, recall_thr, |
|
precision_thr, gt_match_flag, det_match_flag, |
|
gt_ignored_index): |
|
"""Many-to-One match gt and detections with icdar2013 standards. |
|
|
|
Args: |
|
det_id (int): Detection index. |
|
recall_mat (ndarray): `gt_num x det_num` matrix with element (i,j) |
|
being the recall ratio of gt i to det j. |
|
precision_mat (ndarray): `gt_num x det_num` matrix with element (i,j) |
|
being the precision ratio of gt i to det j. |
|
recall_thr (float): The recall threshold. |
|
precision_thr (float): The precision threshold. |
|
gt_match_flag (ndarray): An array indicates each gt has been matched |
|
already. |
|
det_match_flag (ndarray): An array indicates each detection box has |
|
been matched already or not. |
|
gt_ignored_index (list): A list indicates each gt box can be ignored |
|
or not. |
|
|
|
Returns: |
|
tuple (True|False, list): The first indicates the detection is matched |
|
or not; the second is the matched gt ids. |
|
""" |
|
assert isinstance(det_id, int) |
|
assert isinstance(recall_mat, np.ndarray) |
|
assert isinstance(precision_mat, np.ndarray) |
|
assert 0 <= recall_thr <= 1 |
|
assert 0 <= precision_thr <= 1 |
|
|
|
assert isinstance(gt_match_flag, list) |
|
assert isinstance(det_match_flag, list) |
|
assert isinstance(gt_ignored_index, list) |
|
many_sum = 0. |
|
gt_ids = [] |
|
for gt_id in range(recall_mat.shape[0]): |
|
if gt_match_flag[gt_id] == 0 and det_match_flag[ |
|
det_id] == 0 and gt_id not in gt_ignored_index: |
|
if recall_mat[gt_id, det_id] >= recall_thr: |
|
many_sum += precision_mat[gt_id, det_id] |
|
gt_ids.append(gt_id) |
|
if many_sum >= precision_thr: |
|
return True, gt_ids |
|
return False, [] |
|
|
|
|
|
def points_center(points): |
|
|
|
assert isinstance(points, np.ndarray) |
|
assert points.size % 2 == 0 |
|
|
|
points = points.reshape([-1, 2]) |
|
return np.mean(points, axis=0) |
|
|
|
|
|
def point_distance(p1, p2): |
|
assert isinstance(p1, np.ndarray) |
|
assert isinstance(p2, np.ndarray) |
|
|
|
assert p1.size == 2 |
|
assert p2.size == 2 |
|
|
|
dist = np.square(p2 - p1) |
|
dist = np.sum(dist) |
|
dist = np.sqrt(dist) |
|
return dist |
|
|
|
|
|
def box_center_distance(b1, b2): |
|
assert isinstance(b1, np.ndarray) |
|
assert isinstance(b2, np.ndarray) |
|
return point_distance(points_center(b1), points_center(b2)) |
|
|
|
|
|
def box_diag(box): |
|
assert isinstance(box, np.ndarray) |
|
assert box.size == 8 |
|
|
|
return point_distance(box[0:2], box[4:6]) |
|
|
|
|
|
def filter_2dlist_result(results, scores, score_thr): |
|
"""Find out detected results whose score > score_thr. |
|
|
|
Args: |
|
results (list[list[float]]): The result list. |
|
score (list): The score list. |
|
score_thr (float): The score threshold. |
|
Returns: |
|
valid_results (list[list[float]]): The valid results. |
|
valid_score (list[float]): The scores which correspond to the valid |
|
results. |
|
""" |
|
assert isinstance(results, list) |
|
assert len(results) == len(scores) |
|
assert isinstance(score_thr, float) |
|
assert 0 <= score_thr <= 1 |
|
|
|
inds = np.array(scores) > score_thr |
|
valid_results = [results[idx] for idx in np.where(inds)[0].tolist()] |
|
valid_scores = [scores[idx] for idx in np.where(inds)[0].tolist()] |
|
return valid_results, valid_scores |
|
|
|
|
|
def filter_result(results, scores, score_thr): |
|
"""Find out detected results whose score > score_thr. |
|
|
|
Args: |
|
results (ndarray): The results matrix of shape (n, k). |
|
score (ndarray): The score vector of shape (n,). |
|
score_thr (float): The score threshold. |
|
Returns: |
|
valid_results (ndarray): The valid results of shape (m,k) with m<=n. |
|
valid_score (ndarray): The scores which correspond to the |
|
valid results. |
|
""" |
|
assert results.ndim == 2 |
|
assert scores.shape[0] == results.shape[0] |
|
assert isinstance(score_thr, float) |
|
assert 0 <= score_thr <= 1 |
|
|
|
inds = scores > score_thr |
|
valid_results = results[inds, :] |
|
valid_scores = scores[inds] |
|
return valid_results, valid_scores |
|
|
|
|
|
def select_top_boundary(boundaries_list, scores_list, score_thr): |
|
"""Select poly boundaries with scores >= score_thr. |
|
|
|
Args: |
|
boundaries_list (list[list[list[float]]]): List of boundaries. |
|
The 1st, 2nd, and 3rd indices are for image, text and |
|
vertice, respectively. |
|
scores_list (list(list[float])): List of lists of scores. |
|
score_thr (float): The score threshold to filter out bboxes. |
|
|
|
Returns: |
|
selected_bboxes (list[list[list[float]]]): List of boundaries. |
|
The 1st, 2nd, and 3rd indices are for image, text and vertice, |
|
respectively. |
|
""" |
|
assert isinstance(boundaries_list, list) |
|
assert isinstance(scores_list, list) |
|
assert isinstance(score_thr, float) |
|
assert len(boundaries_list) == len(scores_list) |
|
assert 0 <= score_thr <= 1 |
|
|
|
selected_boundaries = [] |
|
for boundary, scores in zip(boundaries_list, scores_list): |
|
if len(scores) > 0: |
|
assert len(scores) == len(boundary) |
|
inds = [ |
|
iter for iter in range(len(scores)) |
|
if scores[iter] >= score_thr |
|
] |
|
selected_boundaries.append([boundary[i] for i in inds]) |
|
else: |
|
selected_boundaries.append(boundary) |
|
return selected_boundaries |
|
|
|
|
|
def select_bboxes_via_score(bboxes_list, scores_list, score_thr): |
|
"""Select bboxes with scores >= score_thr. |
|
|
|
Args: |
|
bboxes_list (list[ndarray]): List of bboxes. Each element is ndarray of |
|
shape (n,8) |
|
scores_list (list(list[float])): List of lists of scores. |
|
score_thr (float): The score threshold to filter out bboxes. |
|
|
|
Returns: |
|
selected_bboxes (list[ndarray]): List of bboxes. Each element is |
|
ndarray of shape (m,8) with m<=n. |
|
""" |
|
assert isinstance(bboxes_list, list) |
|
assert isinstance(scores_list, list) |
|
assert isinstance(score_thr, float) |
|
assert len(bboxes_list) == len(scores_list) |
|
assert 0 <= score_thr <= 1 |
|
|
|
selected_bboxes = [] |
|
for bboxes, scores in zip(bboxes_list, scores_list): |
|
if len(scores) > 0: |
|
assert len(scores) == bboxes.shape[0] |
|
inds = [ |
|
iter for iter in range(len(scores)) |
|
if scores[iter] >= score_thr |
|
] |
|
selected_bboxes.append(bboxes[inds, :]) |
|
else: |
|
selected_bboxes.append(bboxes) |
|
return selected_bboxes |
|
|