|
|
|
import cv2 |
|
import numpy as np |
|
from shapely.geometry import LineString, Point |
|
|
|
import mmocr.utils as utils |
|
from .box_utils import sort_vertex |
|
|
|
|
|
def box_jitter(points_x, points_y, jitter_ratio_x=0.5, jitter_ratio_y=0.1): |
|
"""Jitter on the coordinates of bounding box. |
|
|
|
Args: |
|
points_x (list[float | int]): List of y for four vertices. |
|
points_y (list[float | int]): List of x for four vertices. |
|
jitter_ratio_x (float): Horizontal jitter ratio relative to the height. |
|
jitter_ratio_y (float): Vertical jitter ratio relative to the height. |
|
""" |
|
assert len(points_x) == 4 |
|
assert len(points_y) == 4 |
|
assert isinstance(jitter_ratio_x, float) |
|
assert isinstance(jitter_ratio_y, float) |
|
assert 0 <= jitter_ratio_x < 1 |
|
assert 0 <= jitter_ratio_y < 1 |
|
|
|
points = [Point(points_x[i], points_y[i]) for i in range(4)] |
|
line_list = [ |
|
LineString([points[i], points[i + 1 if i < 3 else 0]]) |
|
for i in range(4) |
|
] |
|
|
|
tmp_h = max(line_list[1].length, line_list[3].length) |
|
|
|
for i in range(4): |
|
jitter_pixel_x = (np.random.rand() - 0.5) * 2 * jitter_ratio_x * tmp_h |
|
jitter_pixel_y = (np.random.rand() - 0.5) * 2 * jitter_ratio_y * tmp_h |
|
points_x[i] += jitter_pixel_x |
|
points_y[i] += jitter_pixel_y |
|
|
|
|
|
def warp_img(src_img, |
|
box, |
|
jitter_flag=False, |
|
jitter_ratio_x=0.5, |
|
jitter_ratio_y=0.1): |
|
"""Crop box area from image using opencv warpPerspective w/o box jitter. |
|
|
|
Args: |
|
src_img (np.array): Image before cropping. |
|
box (list[float | int]): Coordinates of quadrangle. |
|
""" |
|
assert utils.is_type_list(box, (float, int)) |
|
assert len(box) == 8 |
|
|
|
h, w = src_img.shape[:2] |
|
points_x = [min(max(x, 0), w) for x in box[0:8:2]] |
|
points_y = [min(max(y, 0), h) for y in box[1:9:2]] |
|
|
|
points_x, points_y = sort_vertex(points_x, points_y) |
|
|
|
if jitter_flag: |
|
box_jitter( |
|
points_x, |
|
points_y, |
|
jitter_ratio_x=jitter_ratio_x, |
|
jitter_ratio_y=jitter_ratio_y) |
|
|
|
points = [Point(points_x[i], points_y[i]) for i in range(4)] |
|
edges = [ |
|
LineString([points[i], points[i + 1 if i < 3 else 0]]) |
|
for i in range(4) |
|
] |
|
|
|
pts1 = np.float32([[points[i].x, points[i].y] for i in range(4)]) |
|
box_width = max(edges[0].length, edges[2].length) |
|
box_height = max(edges[1].length, edges[3].length) |
|
|
|
pts2 = np.float32([[0, 0], [box_width, 0], [box_width, box_height], |
|
[0, box_height]]) |
|
M = cv2.getPerspectiveTransform(pts1, pts2) |
|
dst_img = cv2.warpPerspective(src_img, M, |
|
(int(box_width), int(box_height))) |
|
|
|
return dst_img |
|
|
|
|
|
def crop_img(src_img, box, long_edge_pad_ratio=0.4, short_edge_pad_ratio=0.2): |
|
"""Crop text region with their bounding box. |
|
|
|
Args: |
|
src_img (np.array): The original image. |
|
box (list[float | int]): Points of quadrangle. |
|
long_edge_pad_ratio (float): Box pad ratio for long edge |
|
corresponding to font size. |
|
short_edge_pad_ratio (float): Box pad ratio for short edge |
|
corresponding to font size. |
|
""" |
|
assert utils.is_type_list(box, (float, int)) |
|
assert len(box) == 8 |
|
assert 0. <= long_edge_pad_ratio < 1.0 |
|
assert 0. <= short_edge_pad_ratio < 1.0 |
|
|
|
h, w = src_img.shape[:2] |
|
points_x = np.clip(np.array(box[0::2]), 0, w) |
|
points_y = np.clip(np.array(box[1::2]), 0, h) |
|
|
|
box_width = np.max(points_x) - np.min(points_x) |
|
box_height = np.max(points_y) - np.min(points_y) |
|
font_size = min(box_height, box_width) |
|
|
|
if box_height < box_width: |
|
horizontal_pad = long_edge_pad_ratio * font_size |
|
vertical_pad = short_edge_pad_ratio * font_size |
|
else: |
|
horizontal_pad = short_edge_pad_ratio * font_size |
|
vertical_pad = long_edge_pad_ratio * font_size |
|
|
|
left = np.clip(int(np.min(points_x) - horizontal_pad), 0, w) |
|
top = np.clip(int(np.min(points_y) - vertical_pad), 0, h) |
|
right = np.clip(int(np.max(points_x) + horizontal_pad), 0, w) |
|
bottom = np.clip(int(np.max(points_y) + vertical_pad), 0, h) |
|
|
|
dst_img = src_img[top:bottom, left:right] |
|
|
|
return dst_img |
|
|