|
|
|
import imgaug |
|
import imgaug.augmenters as iaa |
|
import mmcv |
|
import numpy as np |
|
from mmdet.core.mask import PolygonMasks |
|
from mmdet.datasets.builder import PIPELINES |
|
|
|
|
|
class AugmenterBuilder: |
|
"""Build imgaug object according ImgAug argmentations.""" |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def build(self, args, root=True): |
|
if args is None: |
|
return None |
|
if isinstance(args, (int, float, str)): |
|
return args |
|
if isinstance(args, list): |
|
if root: |
|
sequence = [self.build(value, root=False) for value in args] |
|
return iaa.Sequential(sequence) |
|
arg_list = [self.to_tuple_if_list(a) for a in args[1:]] |
|
return getattr(iaa, args[0])(*arg_list) |
|
if isinstance(args, dict): |
|
if 'cls' in args: |
|
cls = getattr(iaa, args['cls']) |
|
return cls( |
|
**{ |
|
k: self.to_tuple_if_list(v) |
|
for k, v in args.items() if not k == 'cls' |
|
}) |
|
else: |
|
return { |
|
key: self.build(value, root=False) |
|
for key, value in args.items() |
|
} |
|
raise RuntimeError('unknown augmenter arg: ' + str(args)) |
|
|
|
def to_tuple_if_list(self, obj): |
|
if isinstance(obj, list): |
|
return tuple(obj) |
|
return obj |
|
|
|
|
|
@PIPELINES.register_module() |
|
class ImgAug: |
|
"""A wrapper to use imgaug https://github.com/aleju/imgaug. |
|
|
|
Args: |
|
args ([list[list|dict]]): The argumentation list. For details, please |
|
refer to imgaug document. Take args=[['Fliplr', 0.5], |
|
dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]] as an |
|
example. The args horizontally flip images with probability 0.5, |
|
followed by random rotation with angles in range [-10, 10], and |
|
resize with an independent scale in range [0.5, 3.0] for each |
|
side of images. |
|
""" |
|
|
|
def __init__(self, args=None): |
|
self.augmenter_args = args |
|
self.augmenter = AugmenterBuilder().build(self.augmenter_args) |
|
|
|
def __call__(self, results): |
|
|
|
image = results['img'] |
|
aug = None |
|
shape = image.shape |
|
|
|
if self.augmenter: |
|
aug = self.augmenter.to_deterministic() |
|
results['img'] = aug.augment_image(image) |
|
results['img_shape'] = results['img'].shape |
|
results['flip'] = 'unknown' |
|
results['flip_direction'] = 'unknown' |
|
target_shape = results['img_shape'] |
|
|
|
self.may_augment_annotation(aug, shape, target_shape, results) |
|
|
|
return results |
|
|
|
def may_augment_annotation(self, aug, shape, target_shape, results): |
|
if aug is None: |
|
return results |
|
|
|
|
|
for key in results['mask_fields']: |
|
masks = self.may_augment_poly(aug, shape, results[key]) |
|
if len(masks) > 0: |
|
results[key] = PolygonMasks(masks, *target_shape[:2]) |
|
|
|
|
|
for key in results['bbox_fields']: |
|
bboxes = self.may_augment_poly( |
|
aug, shape, results[key], mask_flag=False) |
|
results[key] = np.zeros(0) |
|
if len(bboxes) > 0: |
|
results[key] = np.stack(bboxes) |
|
|
|
return results |
|
|
|
def may_augment_poly(self, aug, img_shape, polys, mask_flag=True): |
|
key_points, poly_point_nums = [], [] |
|
for poly in polys: |
|
if mask_flag: |
|
poly = poly[0] |
|
poly = poly.reshape(-1, 2) |
|
key_points.extend([imgaug.Keypoint(p[0], p[1]) for p in poly]) |
|
poly_point_nums.append(poly.shape[0]) |
|
key_points = aug.augment_keypoints( |
|
[imgaug.KeypointsOnImage(keypoints=key_points, |
|
shape=img_shape)])[0].keypoints |
|
|
|
new_polys = [] |
|
start_idx = 0 |
|
for poly_point_num in poly_point_nums: |
|
new_poly = [] |
|
for key_point in key_points[start_idx:(start_idx + |
|
poly_point_num)]: |
|
new_poly.append([key_point.x, key_point.y]) |
|
start_idx += poly_point_num |
|
new_poly = np.array(new_poly).flatten() |
|
new_polys.append([new_poly] if mask_flag else new_poly) |
|
|
|
return new_polys |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class EastRandomCrop: |
|
|
|
def __init__(self, |
|
target_size=(640, 640), |
|
max_tries=10, |
|
min_crop_side_ratio=0.1): |
|
self.target_size = target_size |
|
self.max_tries = max_tries |
|
self.min_crop_side_ratio = min_crop_side_ratio |
|
|
|
def __call__(self, results): |
|
|
|
|
|
img = results['img'] |
|
crop_x, crop_y, crop_w, crop_h = self.crop_area( |
|
img, results['gt_masks']) |
|
scale_w = self.target_size[0] / crop_w |
|
scale_h = self.target_size[1] / crop_h |
|
scale = min(scale_w, scale_h) |
|
h = int(crop_h * scale) |
|
w = int(crop_w * scale) |
|
padded_img = np.zeros( |
|
(self.target_size[1], self.target_size[0], img.shape[2]), |
|
img.dtype) |
|
padded_img[:h, :w] = mmcv.imresize( |
|
img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h)) |
|
|
|
|
|
for key in results['bbox_fields']: |
|
lines = [] |
|
for box in results[key]: |
|
box = box.reshape(2, 2) |
|
poly = ((box - (crop_x, crop_y)) * scale) |
|
if not self.is_poly_outside_rect(poly, 0, 0, w, h): |
|
lines.append(poly.flatten()) |
|
results[key] = np.array(lines) |
|
|
|
for key in results['mask_fields']: |
|
polys = [] |
|
polys_label = [] |
|
for poly in results[key]: |
|
poly = np.array(poly).reshape(-1, 2) |
|
poly = ((poly - (crop_x, crop_y)) * scale) |
|
if not self.is_poly_outside_rect(poly, 0, 0, w, h): |
|
polys.append([poly]) |
|
polys_label.append(0) |
|
results[key] = PolygonMasks(polys, *self.target_size) |
|
if key == 'gt_masks': |
|
results['gt_labels'] = polys_label |
|
|
|
results['img'] = padded_img |
|
results['img_shape'] = padded_img.shape |
|
|
|
return results |
|
|
|
def is_poly_in_rect(self, poly, x, y, w, h): |
|
poly = np.array(poly) |
|
if poly[:, 0].min() < x or poly[:, 0].max() > x + w: |
|
return False |
|
if poly[:, 1].min() < y or poly[:, 1].max() > y + h: |
|
return False |
|
return True |
|
|
|
def is_poly_outside_rect(self, poly, x, y, w, h): |
|
poly = np.array(poly).reshape(-1, 2) |
|
if poly[:, 0].max() < x or poly[:, 0].min() > x + w: |
|
return True |
|
if poly[:, 1].max() < y or poly[:, 1].min() > y + h: |
|
return True |
|
return False |
|
|
|
def split_regions(self, axis): |
|
regions = [] |
|
min_axis = 0 |
|
for i in range(1, axis.shape[0]): |
|
if axis[i] != axis[i - 1] + 1: |
|
region = axis[min_axis:i] |
|
min_axis = i |
|
regions.append(region) |
|
return regions |
|
|
|
def random_select(self, axis, max_size): |
|
xx = np.random.choice(axis, size=2) |
|
xmin = np.min(xx) |
|
xmax = np.max(xx) |
|
xmin = np.clip(xmin, 0, max_size - 1) |
|
xmax = np.clip(xmax, 0, max_size - 1) |
|
return xmin, xmax |
|
|
|
def region_wise_random_select(self, regions): |
|
selected_index = list(np.random.choice(len(regions), 2)) |
|
selected_values = [] |
|
for index in selected_index: |
|
axis = regions[index] |
|
xx = int(np.random.choice(axis, size=1)) |
|
selected_values.append(xx) |
|
xmin = min(selected_values) |
|
xmax = max(selected_values) |
|
return xmin, xmax |
|
|
|
def crop_area(self, img, polys): |
|
h, w, _ = img.shape |
|
h_array = np.zeros(h, dtype=np.int32) |
|
w_array = np.zeros(w, dtype=np.int32) |
|
for points in polys: |
|
points = np.round( |
|
points, decimals=0).astype(np.int32).reshape(-1, 2) |
|
min_x = np.min(points[:, 0]) |
|
max_x = np.max(points[:, 0]) |
|
w_array[min_x:max_x] = 1 |
|
min_y = np.min(points[:, 1]) |
|
max_y = np.max(points[:, 1]) |
|
h_array[min_y:max_y] = 1 |
|
|
|
h_axis = np.where(h_array == 0)[0] |
|
w_axis = np.where(w_array == 0)[0] |
|
|
|
if len(h_axis) == 0 or len(w_axis) == 0: |
|
return 0, 0, w, h |
|
|
|
h_regions = self.split_regions(h_axis) |
|
w_regions = self.split_regions(w_axis) |
|
|
|
for i in range(self.max_tries): |
|
if len(w_regions) > 1: |
|
xmin, xmax = self.region_wise_random_select(w_regions) |
|
else: |
|
xmin, xmax = self.random_select(w_axis, w) |
|
if len(h_regions) > 1: |
|
ymin, ymax = self.region_wise_random_select(h_regions) |
|
else: |
|
ymin, ymax = self.random_select(h_axis, h) |
|
|
|
if (xmax - xmin < self.min_crop_side_ratio * w |
|
or ymax - ymin < self.min_crop_side_ratio * h): |
|
|
|
continue |
|
num_poly_in_rect = 0 |
|
for poly in polys: |
|
if not self.is_poly_outside_rect(poly, xmin, ymin, xmax - xmin, |
|
ymax - ymin): |
|
num_poly_in_rect += 1 |
|
break |
|
|
|
if num_poly_in_rect > 0: |
|
return xmin, ymin, xmax - xmin, ymax - ymin |
|
|
|
return 0, 0, w, h |
|
|