|
|
|
import math |
|
|
|
import cv2 |
|
import mmcv |
|
import numpy as np |
|
import torchvision.transforms as transforms |
|
from mmdet.core import BitmapMasks, PolygonMasks |
|
from mmdet.datasets.builder import PIPELINES |
|
from mmdet.datasets.pipelines.transforms import Resize |
|
from PIL import Image |
|
from shapely.geometry import Polygon as plg |
|
|
|
import mmocr.core.evaluation.utils as eval_utils |
|
from mmocr.utils import check_argument |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomCropInstances: |
|
"""Randomly crop images and make sure to contain text instances. |
|
|
|
Args: |
|
target_size (tuple or int): (height, width) |
|
positive_sample_ratio (float): The probability of sampling regions |
|
that go through positive regions. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
target_size, |
|
instance_key, |
|
mask_type='inx0', |
|
positive_sample_ratio=5.0 / 8.0): |
|
|
|
assert mask_type in ['inx0', 'union_all'] |
|
|
|
self.mask_type = mask_type |
|
self.instance_key = instance_key |
|
self.positive_sample_ratio = positive_sample_ratio |
|
self.target_size = target_size if (target_size is None or isinstance( |
|
target_size, tuple)) else (target_size, target_size) |
|
|
|
def sample_offset(self, img_gt, img_size): |
|
h, w = img_size |
|
t_h, t_w = self.target_size |
|
|
|
|
|
t_h = t_h if t_h < h else h |
|
t_w = t_w if t_w < w else w |
|
if (img_gt is not None |
|
and np.random.random_sample() < self.positive_sample_ratio |
|
and np.max(img_gt) > 0): |
|
|
|
|
|
|
|
|
|
tl = np.min(np.where(img_gt > 0), axis=1) - (t_h, t_w) |
|
tl[tl < 0] = 0 |
|
|
|
br = np.max(np.where(img_gt > 0), axis=1) - (t_h, t_w) |
|
br[br < 0] = 0 |
|
|
|
br[0] = min(br[0], h - t_h) |
|
br[1] = min(br[1], w - t_w) |
|
|
|
h = np.random.randint(tl[0], br[0]) if tl[0] < br[0] else 0 |
|
w = np.random.randint(tl[1], br[1]) if tl[1] < br[1] else 0 |
|
else: |
|
|
|
|
|
h = np.random.randint(0, h - t_h) if h - t_h > 0 else 0 |
|
w = np.random.randint(0, w - t_w) if w - t_w > 0 else 0 |
|
|
|
return (h, w) |
|
|
|
@staticmethod |
|
def crop_img(img, offset, target_size): |
|
h, w = img.shape[:2] |
|
br = np.min( |
|
np.stack((np.array(offset) + np.array(target_size), np.array( |
|
(h, w)))), |
|
axis=0) |
|
return img[offset[0]:br[0], offset[1]:br[1]], np.array( |
|
[offset[1], offset[0], br[1], br[0]]) |
|
|
|
def crop_bboxes(self, bboxes, canvas_bbox): |
|
kept_bboxes = [] |
|
kept_inx = [] |
|
canvas_poly = eval_utils.box2polygon(canvas_bbox) |
|
tl = canvas_bbox[0:2] |
|
|
|
for idx, bbox in enumerate(bboxes): |
|
poly = eval_utils.box2polygon(bbox) |
|
area, inters = eval_utils.poly_intersection( |
|
poly, canvas_poly, return_poly=True) |
|
if area == 0: |
|
continue |
|
xmin, ymin, xmax, ymax = inters.bounds |
|
kept_bboxes += [ |
|
np.array( |
|
[xmin - tl[0], ymin - tl[1], xmax - tl[0], ymax - tl[1]], |
|
dtype=np.float32) |
|
] |
|
kept_inx += [idx] |
|
|
|
if len(kept_inx) == 0: |
|
return np.array([]).astype(np.float32).reshape(0, 4), kept_inx |
|
|
|
return np.stack(kept_bboxes), kept_inx |
|
|
|
@staticmethod |
|
def generate_mask(gt_mask, type): |
|
|
|
if type == 'inx0': |
|
return gt_mask.masks[0] |
|
if type == 'union_all': |
|
mask = gt_mask.masks[0].copy() |
|
for idx in range(1, len(gt_mask.masks)): |
|
mask = np.logical_or(mask, gt_mask.masks[idx]) |
|
return mask |
|
|
|
raise NotImplementedError |
|
|
|
def __call__(self, results): |
|
|
|
gt_mask = results[self.instance_key] |
|
mask = None |
|
if len(gt_mask.masks) > 0: |
|
mask = self.generate_mask(gt_mask, self.mask_type) |
|
results['crop_offset'] = self.sample_offset(mask, |
|
results['img'].shape[:2]) |
|
|
|
|
|
img, bbox = self.crop_img(results['img'], results['crop_offset'], |
|
self.target_size) |
|
results['img'] = img |
|
img_shape = img.shape |
|
results['img_shape'] = img_shape |
|
|
|
|
|
for key in results.get('mask_fields', []): |
|
results[key] = results[key].crop(bbox) |
|
|
|
|
|
for key in results.get('bbox_fields', []): |
|
results[key], kept_inx = self.crop_bboxes(results[key], bbox) |
|
if key == 'gt_bboxes': |
|
|
|
if 'gt_labels' in results: |
|
ori_labels = results['gt_labels'] |
|
ori_inst_num = len(ori_labels) |
|
results['gt_labels'] = [ |
|
ori_labels[idx] for idx in range(ori_inst_num) |
|
if idx in kept_inx |
|
] |
|
|
|
if 'gt_masks' in results: |
|
ori_mask = results['gt_masks'].masks |
|
kept_mask = [ |
|
ori_mask[idx] for idx in range(ori_inst_num) |
|
if idx in kept_inx |
|
] |
|
target_h, target_w = bbox[3] - bbox[1], bbox[2] - bbox[0] |
|
if len(kept_inx) > 0: |
|
kept_mask = np.stack(kept_mask) |
|
else: |
|
kept_mask = np.empty((0, target_h, target_w), |
|
dtype=np.float32) |
|
results['gt_masks'] = BitmapMasks(kept_mask, target_h, |
|
target_w) |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomRotateTextDet: |
|
"""Randomly rotate images.""" |
|
|
|
def __init__(self, rotate_ratio=1.0, max_angle=10): |
|
self.rotate_ratio = rotate_ratio |
|
self.max_angle = max_angle |
|
|
|
@staticmethod |
|
def sample_angle(max_angle): |
|
angle = np.random.random_sample() * 2 * max_angle - max_angle |
|
return angle |
|
|
|
@staticmethod |
|
def rotate_img(img, angle): |
|
h, w = img.shape[:2] |
|
rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1) |
|
img_target = cv2.warpAffine( |
|
img, rotation_matrix, (w, h), flags=cv2.INTER_NEAREST) |
|
assert img_target.shape == img.shape |
|
return img_target |
|
|
|
def __call__(self, results): |
|
if np.random.random_sample() < self.rotate_ratio: |
|
|
|
results['rotated_angle'] = self.sample_angle(self.max_angle) |
|
img = self.rotate_img(results['img'], results['rotated_angle']) |
|
results['img'] = img |
|
img_shape = img.shape |
|
results['img_shape'] = img_shape |
|
|
|
|
|
for key in results.get('mask_fields', []): |
|
masks = results[key].masks |
|
mask_list = [] |
|
for m in masks: |
|
rotated_m = self.rotate_img(m, results['rotated_angle']) |
|
mask_list.append(rotated_m) |
|
results[key] = BitmapMasks(mask_list, *(img_shape[:2])) |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class ColorJitter: |
|
"""An interface for torch color jitter so that it can be invoked in |
|
mmdetection pipeline.""" |
|
|
|
def __init__(self, **kwargs): |
|
self.transform = transforms.ColorJitter(**kwargs) |
|
|
|
def __call__(self, results): |
|
|
|
img = results['img'][..., ::-1] |
|
img = Image.fromarray(img) |
|
img = self.transform(img) |
|
img = np.asarray(img) |
|
img = img[..., ::-1] |
|
results['img'] = img |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class ScaleAspectJitter(Resize): |
|
"""Resize image and segmentation mask encoded by coordinates. |
|
|
|
Allowed resize types are `around_min_img_scale`, `long_short_bound`, and |
|
`indep_sample_in_range`. |
|
""" |
|
|
|
def __init__(self, |
|
img_scale=None, |
|
multiscale_mode='range', |
|
ratio_range=None, |
|
keep_ratio=False, |
|
resize_type='around_min_img_scale', |
|
aspect_ratio_range=None, |
|
long_size_bound=None, |
|
short_size_bound=None, |
|
scale_range=None): |
|
super().__init__( |
|
img_scale=img_scale, |
|
multiscale_mode=multiscale_mode, |
|
ratio_range=ratio_range, |
|
keep_ratio=keep_ratio) |
|
assert not keep_ratio |
|
assert resize_type in [ |
|
'around_min_img_scale', 'long_short_bound', 'indep_sample_in_range' |
|
] |
|
self.resize_type = resize_type |
|
|
|
if resize_type == 'indep_sample_in_range': |
|
assert ratio_range is None |
|
assert aspect_ratio_range is None |
|
assert short_size_bound is None |
|
assert long_size_bound is None |
|
assert scale_range is not None |
|
else: |
|
assert scale_range is None |
|
assert isinstance(ratio_range, tuple) |
|
assert isinstance(aspect_ratio_range, tuple) |
|
assert check_argument.equal_len(ratio_range, aspect_ratio_range) |
|
|
|
if resize_type in ['long_short_bound']: |
|
assert short_size_bound is not None |
|
assert long_size_bound is not None |
|
|
|
self.aspect_ratio_range = aspect_ratio_range |
|
self.long_size_bound = long_size_bound |
|
self.short_size_bound = short_size_bound |
|
self.scale_range = scale_range |
|
|
|
@staticmethod |
|
def sample_from_range(range): |
|
assert len(range) == 2 |
|
min_value, max_value = min(range), max(range) |
|
value = np.random.random_sample() * (max_value - min_value) + min_value |
|
|
|
return value |
|
|
|
def _random_scale(self, results): |
|
|
|
if self.resize_type == 'indep_sample_in_range': |
|
w = self.sample_from_range(self.scale_range) |
|
h = self.sample_from_range(self.scale_range) |
|
results['scale'] = (int(w), int(h)) |
|
results['scale_idx'] = None |
|
return |
|
h, w = results['img'].shape[0:2] |
|
if self.resize_type == 'long_short_bound': |
|
scale1 = 1 |
|
if max(h, w) > self.long_size_bound: |
|
scale1 = self.long_size_bound / max(h, w) |
|
scale2 = self.sample_from_range(self.ratio_range) |
|
scale = scale1 * scale2 |
|
if min(h, w) * scale <= self.short_size_bound: |
|
scale = (self.short_size_bound + 10) * 1.0 / min(h, w) |
|
elif self.resize_type == 'around_min_img_scale': |
|
short_size = min(self.img_scale[0]) |
|
ratio = self.sample_from_range(self.ratio_range) |
|
scale = (ratio * short_size) / min(h, w) |
|
else: |
|
raise NotImplementedError |
|
|
|
aspect = self.sample_from_range(self.aspect_ratio_range) |
|
h_scale = scale * math.sqrt(aspect) |
|
w_scale = scale / math.sqrt(aspect) |
|
results['scale'] = (int(w * w_scale), int(h * h_scale)) |
|
results['scale_idx'] = None |
|
|
|
|
|
@PIPELINES.register_module() |
|
class AffineJitter: |
|
"""An interface for torchvision random affine so that it can be invoked in |
|
mmdet pipeline.""" |
|
|
|
def __init__(self, |
|
degrees=4, |
|
translate=(0.02, 0.04), |
|
scale=(0.9, 1.1), |
|
shear=None, |
|
resample=False, |
|
fillcolor=0): |
|
self.transform = transforms.RandomAffine( |
|
degrees=degrees, |
|
translate=translate, |
|
scale=scale, |
|
shear=shear, |
|
resample=resample, |
|
fillcolor=fillcolor) |
|
|
|
def __call__(self, results): |
|
|
|
img = results['img'][..., ::-1] |
|
img = Image.fromarray(img) |
|
img = self.transform(img) |
|
img = np.asarray(img) |
|
img = img[..., ::-1] |
|
results['img'] = img |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomCropPolyInstances: |
|
"""Randomly crop images and make sure to contain at least one intact |
|
instance.""" |
|
|
|
def __init__(self, |
|
instance_key='gt_masks', |
|
crop_ratio=5.0 / 8.0, |
|
min_side_ratio=0.4): |
|
super().__init__() |
|
self.instance_key = instance_key |
|
self.crop_ratio = crop_ratio |
|
self.min_side_ratio = min_side_ratio |
|
|
|
def sample_valid_start_end(self, valid_array, min_len, max_start, min_end): |
|
|
|
assert isinstance(min_len, int) |
|
assert len(valid_array) > min_len |
|
|
|
start_array = valid_array.copy() |
|
max_start = min(len(start_array) - min_len, max_start) |
|
start_array[max_start:] = 0 |
|
start_array[0] = 1 |
|
diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0]) |
|
region_starts = np.where(diff_array < 0)[0] |
|
region_ends = np.where(diff_array > 0)[0] |
|
region_ind = np.random.randint(0, len(region_starts)) |
|
start = np.random.randint(region_starts[region_ind], |
|
region_ends[region_ind]) |
|
|
|
end_array = valid_array.copy() |
|
min_end = max(start + min_len, min_end) |
|
end_array[:min_end] = 0 |
|
end_array[-1] = 1 |
|
diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0]) |
|
region_starts = np.where(diff_array < 0)[0] |
|
region_ends = np.where(diff_array > 0)[0] |
|
region_ind = np.random.randint(0, len(region_starts)) |
|
end = np.random.randint(region_starts[region_ind], |
|
region_ends[region_ind]) |
|
return start, end |
|
|
|
def sample_crop_box(self, img_size, results): |
|
"""Generate crop box and make sure not to crop the polygon instances. |
|
|
|
Args: |
|
img_size (tuple(int)): The image size (h, w). |
|
results (dict): The results dict. |
|
""" |
|
|
|
assert isinstance(img_size, tuple) |
|
h, w = img_size[:2] |
|
|
|
key_masks = results[self.instance_key].masks |
|
x_valid_array = np.ones(w, dtype=np.int32) |
|
y_valid_array = np.ones(h, dtype=np.int32) |
|
|
|
selected_mask = key_masks[np.random.randint(0, len(key_masks))] |
|
selected_mask = selected_mask[0].reshape((-1, 2)).astype(np.int32) |
|
max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0) |
|
min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1) |
|
max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0) |
|
min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1) |
|
|
|
for key in results.get('mask_fields', []): |
|
if len(results[key].masks) == 0: |
|
continue |
|
masks = results[key].masks |
|
for mask in masks: |
|
assert len(mask) == 1 |
|
mask = mask[0].reshape((-1, 2)).astype(np.int32) |
|
clip_x = np.clip(mask[:, 0], 0, w - 1) |
|
clip_y = np.clip(mask[:, 1], 0, h - 1) |
|
min_x, max_x = np.min(clip_x), np.max(clip_x) |
|
min_y, max_y = np.min(clip_y), np.max(clip_y) |
|
|
|
x_valid_array[min_x - 2:max_x + 3] = 0 |
|
y_valid_array[min_y - 2:max_y + 3] = 0 |
|
|
|
min_w = int(w * self.min_side_ratio) |
|
min_h = int(h * self.min_side_ratio) |
|
|
|
x1, x2 = self.sample_valid_start_end(x_valid_array, min_w, max_x_start, |
|
min_x_end) |
|
y1, y2 = self.sample_valid_start_end(y_valid_array, min_h, max_y_start, |
|
min_y_end) |
|
|
|
return np.array([x1, y1, x2, y2]) |
|
|
|
def crop_img(self, img, bbox): |
|
assert img.ndim == 3 |
|
h, w, _ = img.shape |
|
assert 0 <= bbox[1] < bbox[3] <= h |
|
assert 0 <= bbox[0] < bbox[2] <= w |
|
return img[bbox[1]:bbox[3], bbox[0]:bbox[2]] |
|
|
|
def __call__(self, results): |
|
if len(results[self.instance_key].masks) < 1: |
|
return results |
|
if np.random.random_sample() < self.crop_ratio: |
|
crop_box = self.sample_crop_box(results['img'].shape, results) |
|
results['crop_region'] = crop_box |
|
img = self.crop_img(results['img'], crop_box) |
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
|
|
|
|
x1, y1, x2, y2 = crop_box |
|
w = max(x2 - x1, 1) |
|
h = max(y2 - y1, 1) |
|
labels = results['gt_labels'] |
|
valid_labels = [] |
|
for key in results.get('mask_fields', []): |
|
if len(results[key].masks) == 0: |
|
continue |
|
results[key] = results[key].crop(crop_box) |
|
|
|
masks = results[key].masks |
|
valid_masks_list = [] |
|
|
|
for ind, mask in enumerate(masks): |
|
assert len(mask) == 1 |
|
polygon = mask[0].reshape((-1, 2)) |
|
if (polygon[:, 0] > |
|
-4).all() and (polygon[:, 0] < w + 4).all() and ( |
|
polygon[:, 1] > -4).all() and (polygon[:, 1] < |
|
h + 4).all(): |
|
mask[0][::2] = np.clip(mask[0][::2], 0, w) |
|
mask[0][1::2] = np.clip(mask[0][1::2], 0, h) |
|
if key == self.instance_key: |
|
valid_labels.append(labels[ind]) |
|
valid_masks_list.append(mask) |
|
|
|
results[key] = PolygonMasks(valid_masks_list, h, w) |
|
results['gt_labels'] = np.array(valid_labels) |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomRotatePolyInstances: |
|
|
|
def __init__(self, |
|
rotate_ratio=0.5, |
|
max_angle=10, |
|
pad_with_fixed_color=False, |
|
pad_value=(0, 0, 0)): |
|
"""Randomly rotate images and polygon masks. |
|
|
|
Args: |
|
rotate_ratio (float): The ratio of samples to operate rotation. |
|
max_angle (int): The maximum rotation angle. |
|
pad_with_fixed_color (bool): The flag for whether to pad rotated |
|
image with fixed value. If set to False, the rotated image will |
|
be padded onto cropped image. |
|
pad_value (tuple(int)): The color value for padding rotated image. |
|
""" |
|
self.rotate_ratio = rotate_ratio |
|
self.max_angle = max_angle |
|
self.pad_with_fixed_color = pad_with_fixed_color |
|
self.pad_value = pad_value |
|
|
|
def rotate(self, center, points, theta, center_shift=(0, 0)): |
|
|
|
(center_x, center_y) = center |
|
center_y = -center_y |
|
x, y = points[::2], points[1::2] |
|
y = -y |
|
|
|
theta = theta / 180 * math.pi |
|
cos = math.cos(theta) |
|
sin = math.sin(theta) |
|
|
|
x = (x - center_x) |
|
y = (y - center_y) |
|
|
|
_x = center_x + x * cos - y * sin + center_shift[0] |
|
_y = -(center_y + x * sin + y * cos) + center_shift[1] |
|
|
|
points[::2], points[1::2] = _x, _y |
|
return points |
|
|
|
def cal_canvas_size(self, ori_size, degree): |
|
assert isinstance(ori_size, tuple) |
|
angle = degree * math.pi / 180.0 |
|
h, w = ori_size[:2] |
|
|
|
cos = math.cos(angle) |
|
sin = math.sin(angle) |
|
canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos)) |
|
canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin)) |
|
|
|
canvas_size = (canvas_h, canvas_w) |
|
return canvas_size |
|
|
|
def sample_angle(self, max_angle): |
|
angle = np.random.random_sample() * 2 * max_angle - max_angle |
|
return angle |
|
|
|
def rotate_img(self, img, angle, canvas_size): |
|
h, w = img.shape[:2] |
|
rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1) |
|
rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2) |
|
rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2) |
|
|
|
if self.pad_with_fixed_color: |
|
target_img = cv2.warpAffine( |
|
img, |
|
rotation_matrix, (canvas_size[1], canvas_size[0]), |
|
flags=cv2.INTER_NEAREST, |
|
borderValue=self.pad_value) |
|
else: |
|
mask = np.zeros_like(img) |
|
(h_ind, w_ind) = (np.random.randint(0, h * 7 // 8), |
|
np.random.randint(0, w * 7 // 8)) |
|
img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)] |
|
img_cut = mmcv.imresize(img_cut, (canvas_size[1], canvas_size[0])) |
|
mask = cv2.warpAffine( |
|
mask, |
|
rotation_matrix, (canvas_size[1], canvas_size[0]), |
|
borderValue=[1, 1, 1]) |
|
target_img = cv2.warpAffine( |
|
img, |
|
rotation_matrix, (canvas_size[1], canvas_size[0]), |
|
borderValue=[0, 0, 0]) |
|
target_img = target_img + img_cut * mask |
|
|
|
return target_img |
|
|
|
def __call__(self, results): |
|
if np.random.random_sample() < self.rotate_ratio: |
|
img = results['img'] |
|
h, w = img.shape[:2] |
|
angle = self.sample_angle(self.max_angle) |
|
canvas_size = self.cal_canvas_size((h, w), angle) |
|
center_shift = (int( |
|
(canvas_size[1] - w) / 2), int((canvas_size[0] - h) / 2)) |
|
|
|
|
|
results['rotated_poly_angle'] = angle |
|
img = self.rotate_img(img, angle, canvas_size) |
|
results['img'] = img |
|
img_shape = img.shape |
|
results['img_shape'] = img_shape |
|
|
|
|
|
for key in results.get('mask_fields', []): |
|
if len(results[key].masks) == 0: |
|
continue |
|
masks = results[key].masks |
|
rotated_masks = [] |
|
for mask in masks: |
|
rotated_mask = self.rotate((w / 2, h / 2), mask[0], angle, |
|
center_shift) |
|
rotated_masks.append([rotated_mask]) |
|
|
|
results[key] = PolygonMasks(rotated_masks, *(img_shape[:2])) |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class SquareResizePad: |
|
|
|
def __init__(self, |
|
target_size, |
|
pad_ratio=0.6, |
|
pad_with_fixed_color=False, |
|
pad_value=(0, 0, 0)): |
|
"""Resize or pad images to be square shape. |
|
|
|
Args: |
|
target_size (int): The target size of square shaped image. |
|
pad_with_fixed_color (bool): The flag for whether to pad rotated |
|
image with fixed value. If set to False, the rescales image will |
|
be padded onto cropped image. |
|
pad_value (tuple(int)): The color value for padding rotated image. |
|
""" |
|
assert isinstance(target_size, int) |
|
assert isinstance(pad_ratio, float) |
|
assert isinstance(pad_with_fixed_color, bool) |
|
assert isinstance(pad_value, tuple) |
|
|
|
self.target_size = target_size |
|
self.pad_ratio = pad_ratio |
|
self.pad_with_fixed_color = pad_with_fixed_color |
|
self.pad_value = pad_value |
|
|
|
def resize_img(self, img, keep_ratio=True): |
|
h, w, _ = img.shape |
|
if keep_ratio: |
|
t_h = self.target_size if h >= w else int(h * self.target_size / w) |
|
t_w = self.target_size if h <= w else int(w * self.target_size / h) |
|
else: |
|
t_h = t_w = self.target_size |
|
img = mmcv.imresize(img, (t_w, t_h)) |
|
return img, (t_h, t_w) |
|
|
|
def square_pad(self, img): |
|
h, w = img.shape[:2] |
|
if h == w: |
|
return img, (0, 0) |
|
pad_size = max(h, w) |
|
if self.pad_with_fixed_color: |
|
expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8) |
|
expand_img[:] = self.pad_value |
|
else: |
|
(h_ind, w_ind) = (np.random.randint(0, h * 7 // 8), |
|
np.random.randint(0, w * 7 // 8)) |
|
img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)] |
|
expand_img = mmcv.imresize(img_cut, (pad_size, pad_size)) |
|
if h > w: |
|
y0, x0 = 0, (h - w) // 2 |
|
else: |
|
y0, x0 = (w - h) // 2, 0 |
|
expand_img[y0:y0 + h, x0:x0 + w] = img |
|
offset = (x0, y0) |
|
|
|
return expand_img, offset |
|
|
|
def square_pad_mask(self, points, offset): |
|
x0, y0 = offset |
|
pad_points = points.copy() |
|
pad_points[::2] = pad_points[::2] + x0 |
|
pad_points[1::2] = pad_points[1::2] + y0 |
|
return pad_points |
|
|
|
def __call__(self, results): |
|
img = results['img'] |
|
|
|
if np.random.random_sample() < self.pad_ratio: |
|
img, out_size = self.resize_img(img, keep_ratio=True) |
|
img, offset = self.square_pad(img) |
|
else: |
|
img, out_size = self.resize_img(img, keep_ratio=False) |
|
offset = (0, 0) |
|
|
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
|
|
for key in results.get('mask_fields', []): |
|
if len(results[key].masks) == 0: |
|
continue |
|
results[key] = results[key].resize(out_size) |
|
masks = results[key].masks |
|
processed_masks = [] |
|
for mask in masks: |
|
square_pad_mask = self.square_pad_mask(mask[0], offset) |
|
processed_masks.append([square_pad_mask]) |
|
|
|
results[key] = PolygonMasks(processed_masks, *(img.shape[:2])) |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomScaling: |
|
|
|
def __init__(self, size=800, scale=(3. / 4, 5. / 2)): |
|
"""Random scale the image while keeping aspect. |
|
|
|
Args: |
|
size (int) : Base size before scaling. |
|
scale (tuple(float)) : The range of scaling. |
|
""" |
|
assert isinstance(size, int) |
|
assert isinstance(scale, float) or isinstance(scale, tuple) |
|
self.size = size |
|
self.scale = scale if isinstance(scale, tuple) \ |
|
else (1 - scale, 1 + scale) |
|
|
|
def __call__(self, results): |
|
image = results['img'] |
|
h, w, _ = results['img_shape'] |
|
|
|
aspect_ratio = np.random.uniform(min(self.scale), max(self.scale)) |
|
scales = self.size * 1.0 / max(h, w) * aspect_ratio |
|
scales = np.array([scales, scales]) |
|
out_size = (int(h * scales[1]), int(w * scales[0])) |
|
image = mmcv.imresize(image, out_size[::-1]) |
|
|
|
results['img'] = image |
|
results['img_shape'] = image.shape |
|
|
|
for key in results.get('mask_fields', []): |
|
if len(results[key].masks) == 0: |
|
continue |
|
results[key] = results[key].resize(out_size) |
|
|
|
return results |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomCropFlip: |
|
|
|
def __init__(self, |
|
pad_ratio=0.1, |
|
crop_ratio=0.5, |
|
iter_num=1, |
|
min_area_ratio=0.2): |
|
"""Random crop and flip a patch of the image. |
|
|
|
Args: |
|
crop_ratio (float): The ratio of cropping. |
|
iter_num (int): Number of operations. |
|
min_area_ratio (float): Minimal area ratio between cropped patch |
|
and original image. |
|
""" |
|
assert isinstance(crop_ratio, float) |
|
assert isinstance(iter_num, int) |
|
assert isinstance(min_area_ratio, float) |
|
|
|
self.pad_ratio = pad_ratio |
|
self.epsilon = 1e-2 |
|
self.crop_ratio = crop_ratio |
|
self.iter_num = iter_num |
|
self.min_area_ratio = min_area_ratio |
|
|
|
def __call__(self, results): |
|
for i in range(self.iter_num): |
|
results = self.random_crop_flip(results) |
|
return results |
|
|
|
def random_crop_flip(self, results): |
|
image = results['img'] |
|
polygons = results['gt_masks'].masks |
|
ignore_polygons = results['gt_masks_ignore'].masks |
|
all_polygons = polygons + ignore_polygons |
|
if len(polygons) == 0: |
|
return results |
|
|
|
if np.random.random() >= self.crop_ratio: |
|
return results |
|
|
|
h, w, _ = results['img_shape'] |
|
area = h * w |
|
pad_h = int(h * self.pad_ratio) |
|
pad_w = int(w * self.pad_ratio) |
|
h_axis, w_axis = self.generate_crop_target(image, all_polygons, pad_h, |
|
pad_w) |
|
if len(h_axis) == 0 or len(w_axis) == 0: |
|
return results |
|
|
|
attempt = 0 |
|
while attempt < 10: |
|
attempt += 1 |
|
polys_keep = [] |
|
polys_new = [] |
|
ign_polys_keep = [] |
|
ign_polys_new = [] |
|
xx = np.random.choice(w_axis, size=2) |
|
xmin = np.min(xx) - pad_w |
|
xmax = np.max(xx) - pad_w |
|
xmin = np.clip(xmin, 0, w - 1) |
|
xmax = np.clip(xmax, 0, w - 1) |
|
yy = np.random.choice(h_axis, size=2) |
|
ymin = np.min(yy) - pad_h |
|
ymax = np.max(yy) - pad_h |
|
ymin = np.clip(ymin, 0, h - 1) |
|
ymax = np.clip(ymax, 0, h - 1) |
|
if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio: |
|
|
|
continue |
|
|
|
pts = np.stack([[xmin, xmax, xmax, xmin], |
|
[ymin, ymin, ymax, ymax]]).T.astype(np.int32) |
|
pp = plg(pts) |
|
fail_flag = False |
|
for polygon in polygons: |
|
ppi = plg(polygon[0].reshape(-1, 2)) |
|
ppiou = eval_utils.poly_intersection(ppi, pp) |
|
if np.abs(ppiou - float(ppi.area)) > self.epsilon and \ |
|
np.abs(ppiou) > self.epsilon: |
|
fail_flag = True |
|
break |
|
elif np.abs(ppiou - float(ppi.area)) < self.epsilon: |
|
polys_new.append(polygon) |
|
else: |
|
polys_keep.append(polygon) |
|
|
|
for polygon in ignore_polygons: |
|
ppi = plg(polygon[0].reshape(-1, 2)) |
|
ppiou = eval_utils.poly_intersection(ppi, pp) |
|
if np.abs(ppiou - float(ppi.area)) > self.epsilon and \ |
|
np.abs(ppiou) > self.epsilon: |
|
fail_flag = True |
|
break |
|
elif np.abs(ppiou - float(ppi.area)) < self.epsilon: |
|
ign_polys_new.append(polygon) |
|
else: |
|
ign_polys_keep.append(polygon) |
|
|
|
if fail_flag: |
|
continue |
|
else: |
|
break |
|
|
|
cropped = image[ymin:ymax, xmin:xmax, :] |
|
select_type = np.random.randint(3) |
|
if select_type == 0: |
|
img = np.ascontiguousarray(cropped[:, ::-1]) |
|
elif select_type == 1: |
|
img = np.ascontiguousarray(cropped[::-1, :]) |
|
else: |
|
img = np.ascontiguousarray(cropped[::-1, ::-1]) |
|
image[ymin:ymax, xmin:xmax, :] = img |
|
results['img'] = image |
|
|
|
if len(polys_new) + len(ign_polys_new) != 0: |
|
height, width, _ = cropped.shape |
|
if select_type == 0: |
|
for idx, polygon in enumerate(polys_new): |
|
poly = polygon[0].reshape(-1, 2) |
|
poly[:, 0] = width - poly[:, 0] + 2 * xmin |
|
polys_new[idx] = [poly.reshape(-1, )] |
|
for idx, polygon in enumerate(ign_polys_new): |
|
poly = polygon[0].reshape(-1, 2) |
|
poly[:, 0] = width - poly[:, 0] + 2 * xmin |
|
ign_polys_new[idx] = [poly.reshape(-1, )] |
|
elif select_type == 1: |
|
for idx, polygon in enumerate(polys_new): |
|
poly = polygon[0].reshape(-1, 2) |
|
poly[:, 1] = height - poly[:, 1] + 2 * ymin |
|
polys_new[idx] = [poly.reshape(-1, )] |
|
for idx, polygon in enumerate(ign_polys_new): |
|
poly = polygon[0].reshape(-1, 2) |
|
poly[:, 1] = height - poly[:, 1] + 2 * ymin |
|
ign_polys_new[idx] = [poly.reshape(-1, )] |
|
else: |
|
for idx, polygon in enumerate(polys_new): |
|
poly = polygon[0].reshape(-1, 2) |
|
poly[:, 0] = width - poly[:, 0] + 2 * xmin |
|
poly[:, 1] = height - poly[:, 1] + 2 * ymin |
|
polys_new[idx] = [poly.reshape(-1, )] |
|
for idx, polygon in enumerate(ign_polys_new): |
|
poly = polygon[0].reshape(-1, 2) |
|
poly[:, 0] = width - poly[:, 0] + 2 * xmin |
|
poly[:, 1] = height - poly[:, 1] + 2 * ymin |
|
ign_polys_new[idx] = [poly.reshape(-1, )] |
|
polygons = polys_keep + polys_new |
|
ignore_polygons = ign_polys_keep + ign_polys_new |
|
results['gt_masks'] = PolygonMasks(polygons, *(image.shape[:2])) |
|
results['gt_masks_ignore'] = PolygonMasks(ignore_polygons, |
|
*(image.shape[:2])) |
|
|
|
return results |
|
|
|
def generate_crop_target(self, image, all_polys, pad_h, pad_w): |
|
"""Generate crop target and make sure not to crop the polygon |
|
instances. |
|
|
|
Args: |
|
image (ndarray): The image waited to be crop. |
|
all_polys (list[list[ndarray]]): All polygons including ground |
|
truth polygons and ground truth ignored polygons. |
|
pad_h (int): Padding length of height. |
|
pad_w (int): Padding length of width. |
|
Returns: |
|
h_axis (ndarray): Vertical cropping range. |
|
w_axis (ndarray): Horizontal cropping range. |
|
""" |
|
h, w, _ = image.shape |
|
h_array = np.zeros((h + pad_h * 2), dtype=np.int32) |
|
w_array = np.zeros((w + pad_w * 2), dtype=np.int32) |
|
|
|
text_polys = [] |
|
for polygon in all_polys: |
|
rect = cv2.minAreaRect(polygon[0].astype(np.int32).reshape(-1, 2)) |
|
box = cv2.boxPoints(rect) |
|
box = np.int0(box) |
|
text_polys.append([box[0], box[1], box[2], box[3]]) |
|
|
|
polys = np.array(text_polys, dtype=np.int32) |
|
for poly in polys: |
|
poly = np.round(poly, decimals=0).astype(np.int32) |
|
minx = np.min(poly[:, 0]) |
|
maxx = np.max(poly[:, 0]) |
|
w_array[minx + pad_w:maxx + pad_w] = 1 |
|
miny = np.min(poly[:, 1]) |
|
maxy = np.max(poly[:, 1]) |
|
h_array[miny + pad_h:maxy + pad_h] = 1 |
|
|
|
h_axis = np.where(h_array == 0)[0] |
|
w_axis = np.where(w_array == 0)[0] |
|
return h_axis, w_axis |
|
|
|
|
|
@PIPELINES.register_module() |
|
class PyramidRescale: |
|
"""Resize the image to the base shape, downsample it with gaussian pyramid, |
|
and rescale it back to original size. |
|
|
|
Adapted from https://github.com/FangShancheng/ABINet. |
|
|
|
Args: |
|
factor (int): The decay factor from base size, or the number of |
|
downsampling operations from the base layer. |
|
base_shape (tuple(int)): The shape of the base layer of the pyramid. |
|
randomize_factor (bool): If True, the final factor would be a random |
|
integer in [0, factor]. |
|
|
|
:Required Keys: |
|
- | ``img`` (ndarray): The input image. |
|
|
|
:Affected Keys: |
|
:Modified: |
|
- | ``img`` (ndarray): The modified image. |
|
""" |
|
|
|
def __init__(self, factor=4, base_shape=(128, 512), randomize_factor=True): |
|
assert isinstance(factor, int) |
|
assert isinstance(base_shape, list) or isinstance(base_shape, tuple) |
|
assert len(base_shape) == 2 |
|
assert isinstance(randomize_factor, bool) |
|
self.factor = factor if not randomize_factor else np.random.randint( |
|
0, factor + 1) |
|
self.base_w, self.base_h = base_shape |
|
|
|
def __call__(self, results): |
|
assert 'img' in results |
|
if self.factor == 0: |
|
return results |
|
img = results['img'] |
|
src_h, src_w = img.shape[:2] |
|
scale_img = mmcv.imresize(img, (self.base_w, self.base_h)) |
|
for _ in range(self.factor): |
|
scale_img = cv2.pyrDown(scale_img) |
|
scale_img = mmcv.imresize(scale_img, (src_w, src_h)) |
|
results['img'] = scale_img |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(factor={self.factor}, ' |
|
repr_str += f'basew={self.basew}, baseh={self.baseh})' |
|
return repr_str |
|
|