|
|
|
import torch |
|
import torch.nn.functional as F |
|
from mmdet.core import BitmapMasks |
|
from torch import nn |
|
|
|
from mmocr.models.builder import LOSSES |
|
from mmocr.utils import check_argument |
|
|
|
|
|
@LOSSES.register_module() |
|
class DRRGLoss(nn.Module): |
|
"""The class for implementing DRRG loss. This is partially adapted from |
|
https://github.com/GXYM/DRRG licensed under the MIT license. |
|
|
|
DRRG: `Deep Relational Reasoning Graph Network for Arbitrary Shape Text |
|
Detection <https://arxiv.org/abs/1908.05900>`_. |
|
|
|
Args: |
|
ohem_ratio (float): The negative/positive ratio in ohem. |
|
""" |
|
|
|
def __init__(self, ohem_ratio=3.0): |
|
super().__init__() |
|
self.ohem_ratio = ohem_ratio |
|
|
|
def balance_bce_loss(self, pred, gt, mask): |
|
"""Balanced Binary-CrossEntropy Loss. |
|
|
|
Args: |
|
pred (Tensor): Shape of :math:`(1, H, W)`. |
|
gt (Tensor): Shape of :math:`(1, H, W)`. |
|
mask (Tensor): Shape of :math:`(1, H, W)`. |
|
|
|
Returns: |
|
Tensor: Balanced bce loss. |
|
""" |
|
assert pred.shape == gt.shape == mask.shape |
|
assert torch.all(pred >= 0) and torch.all(pred <= 1) |
|
assert torch.all(gt >= 0) and torch.all(gt <= 1) |
|
positive = gt * mask |
|
negative = (1 - gt) * mask |
|
positive_count = int(positive.float().sum()) |
|
gt = gt.float() |
|
if positive_count > 0: |
|
loss = F.binary_cross_entropy(pred, gt, reduction='none') |
|
positive_loss = torch.sum(loss * positive.float()) |
|
negative_loss = loss * negative.float() |
|
negative_count = min( |
|
int(negative.float().sum()), |
|
int(positive_count * self.ohem_ratio)) |
|
else: |
|
positive_loss = torch.tensor(0.0, device=pred.device) |
|
loss = F.binary_cross_entropy(pred, gt, reduction='none') |
|
negative_loss = loss * negative.float() |
|
negative_count = 100 |
|
negative_loss, _ = torch.topk(negative_loss.view(-1), negative_count) |
|
|
|
balance_loss = (positive_loss + torch.sum(negative_loss)) / ( |
|
float(positive_count + negative_count) + 1e-5) |
|
|
|
return balance_loss |
|
|
|
def gcn_loss(self, gcn_data): |
|
"""CrossEntropy Loss from gcn module. |
|
|
|
Args: |
|
gcn_data (tuple(Tensor, Tensor)): The first is the |
|
prediction with shape :math:`(N, 2)` and the |
|
second is the gt label with shape :math:`(m, n)` |
|
where :math:`m * n = N`. |
|
|
|
Returns: |
|
Tensor: CrossEntropy loss. |
|
""" |
|
gcn_pred, gt_labels = gcn_data |
|
gt_labels = gt_labels.view(-1).to(gcn_pred.device) |
|
loss = F.cross_entropy(gcn_pred, gt_labels) |
|
|
|
return loss |
|
|
|
def bitmasks2tensor(self, bitmasks, target_sz): |
|
"""Convert Bitmasks to tensor. |
|
|
|
Args: |
|
bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is |
|
for one img. |
|
target_sz (tuple(int, int)): The target tensor of size |
|
:math:`(H, W)`. |
|
|
|
Returns: |
|
list[Tensor]: The list of kernel tensors. Each element stands for |
|
one kernel level. |
|
""" |
|
assert check_argument.is_type_list(bitmasks, BitmapMasks) |
|
assert isinstance(target_sz, tuple) |
|
|
|
batch_size = len(bitmasks) |
|
num_masks = len(bitmasks[0]) |
|
|
|
results = [] |
|
|
|
for level_inx in range(num_masks): |
|
kernel = [] |
|
for batch_inx in range(batch_size): |
|
mask = torch.from_numpy(bitmasks[batch_inx].masks[level_inx]) |
|
|
|
mask_sz = mask.shape |
|
|
|
pad = [ |
|
0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0] |
|
] |
|
mask = F.pad(mask, pad, mode='constant', value=0) |
|
kernel.append(mask) |
|
kernel = torch.stack(kernel) |
|
results.append(kernel) |
|
|
|
return results |
|
|
|
def forward(self, preds, downsample_ratio, gt_text_mask, |
|
gt_center_region_mask, gt_mask, gt_top_height_map, |
|
gt_bot_height_map, gt_sin_map, gt_cos_map): |
|
"""Compute Drrg loss. |
|
|
|
Args: |
|
preds (tuple(Tensor)): The first is the prediction map |
|
with shape :math:`(N, C_{out}, H, W)`. |
|
The second is prediction from GCN module, with |
|
shape :math:`(N, 2)`. |
|
The third is ground-truth label with shape :math:`(N, 8)`. |
|
downsample_ratio (float): The downsample ratio. |
|
gt_text_mask (list[BitmapMasks]): Text mask. |
|
gt_center_region_mask (list[BitmapMasks]): Center region mask. |
|
gt_mask (list[BitmapMasks]): Effective mask. |
|
gt_top_height_map (list[BitmapMasks]): Top height map. |
|
gt_bot_height_map (list[BitmapMasks]): Bottom height map. |
|
gt_sin_map (list[BitmapMasks]): Sinusoid map. |
|
gt_cos_map (list[BitmapMasks]): Cosine map. |
|
|
|
Returns: |
|
dict: A loss dict with ``loss_text``, ``loss_center``, |
|
``loss_height``, ``loss_sin``, ``loss_cos``, and ``loss_gcn``. |
|
""" |
|
assert isinstance(preds, tuple) |
|
assert isinstance(downsample_ratio, float) |
|
assert check_argument.is_type_list(gt_text_mask, BitmapMasks) |
|
assert check_argument.is_type_list(gt_center_region_mask, BitmapMasks) |
|
assert check_argument.is_type_list(gt_mask, BitmapMasks) |
|
assert check_argument.is_type_list(gt_top_height_map, BitmapMasks) |
|
assert check_argument.is_type_list(gt_bot_height_map, BitmapMasks) |
|
assert check_argument.is_type_list(gt_sin_map, BitmapMasks) |
|
assert check_argument.is_type_list(gt_cos_map, BitmapMasks) |
|
|
|
pred_maps, gcn_data = preds |
|
pred_text_region = pred_maps[:, 0, :, :] |
|
pred_center_region = pred_maps[:, 1, :, :] |
|
pred_sin_map = pred_maps[:, 2, :, :] |
|
pred_cos_map = pred_maps[:, 3, :, :] |
|
pred_top_height_map = pred_maps[:, 4, :, :] |
|
pred_bot_height_map = pred_maps[:, 5, :, :] |
|
feature_sz = pred_maps.size() |
|
device = pred_maps.device |
|
|
|
|
|
mapping = { |
|
'gt_text_mask': gt_text_mask, |
|
'gt_center_region_mask': gt_center_region_mask, |
|
'gt_mask': gt_mask, |
|
'gt_top_height_map': gt_top_height_map, |
|
'gt_bot_height_map': gt_bot_height_map, |
|
'gt_sin_map': gt_sin_map, |
|
'gt_cos_map': gt_cos_map |
|
} |
|
gt = {} |
|
for key, value in mapping.items(): |
|
gt[key] = value |
|
if abs(downsample_ratio - 1.0) < 1e-2: |
|
gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:]) |
|
else: |
|
gt[key] = [item.rescale(downsample_ratio) for item in gt[key]] |
|
gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:]) |
|
if key in ['gt_top_height_map', 'gt_bot_height_map']: |
|
gt[key] = [item * downsample_ratio for item in gt[key]] |
|
gt[key] = [item.to(device) for item in gt[key]] |
|
|
|
scale = torch.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8)) |
|
pred_sin_map = pred_sin_map * scale |
|
pred_cos_map = pred_cos_map * scale |
|
|
|
loss_text = self.balance_bce_loss( |
|
torch.sigmoid(pred_text_region), gt['gt_text_mask'][0], |
|
gt['gt_mask'][0]) |
|
|
|
text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0]).float() |
|
negative_text_mask = ((1 - gt['gt_text_mask'][0]) * |
|
gt['gt_mask'][0]).float() |
|
loss_center_map = F.binary_cross_entropy( |
|
torch.sigmoid(pred_center_region), |
|
gt['gt_center_region_mask'][0].float(), |
|
reduction='none') |
|
if int(text_mask.sum()) > 0: |
|
loss_center_positive = torch.sum( |
|
loss_center_map * text_mask) / torch.sum(text_mask) |
|
else: |
|
loss_center_positive = torch.tensor(0.0, device=device) |
|
loss_center_negative = torch.sum( |
|
loss_center_map * |
|
negative_text_mask) / torch.sum(negative_text_mask) |
|
loss_center = loss_center_positive + 0.5 * loss_center_negative |
|
|
|
center_mask = (gt['gt_center_region_mask'][0] * |
|
gt['gt_mask'][0]).float() |
|
if int(center_mask.sum()) > 0: |
|
map_sz = pred_top_height_map.size() |
|
ones = torch.ones(map_sz, dtype=torch.float, device=device) |
|
loss_top = F.smooth_l1_loss( |
|
pred_top_height_map / (gt['gt_top_height_map'][0] + 1e-2), |
|
ones, |
|
reduction='none') |
|
loss_bot = F.smooth_l1_loss( |
|
pred_bot_height_map / (gt['gt_bot_height_map'][0] + 1e-2), |
|
ones, |
|
reduction='none') |
|
gt_height = ( |
|
gt['gt_top_height_map'][0] + gt['gt_bot_height_map'][0]) |
|
loss_height = torch.sum( |
|
(torch.log(gt_height + 1) * |
|
(loss_top + loss_bot)) * center_mask) / torch.sum(center_mask) |
|
|
|
loss_sin = torch.sum( |
|
F.smooth_l1_loss( |
|
pred_sin_map, gt['gt_sin_map'][0], reduction='none') * |
|
center_mask) / torch.sum(center_mask) |
|
loss_cos = torch.sum( |
|
F.smooth_l1_loss( |
|
pred_cos_map, gt['gt_cos_map'][0], reduction='none') * |
|
center_mask) / torch.sum(center_mask) |
|
else: |
|
loss_height = torch.tensor(0.0, device=device) |
|
loss_sin = torch.tensor(0.0, device=device) |
|
loss_cos = torch.tensor(0.0, device=device) |
|
|
|
loss_gcn = self.gcn_loss(gcn_data) |
|
|
|
results = dict( |
|
loss_text=loss_text, |
|
loss_center=loss_center, |
|
loss_height=loss_height, |
|
loss_sin=loss_sin, |
|
loss_cos=loss_cos, |
|
loss_gcn=loss_gcn) |
|
|
|
return results |
|
|