|
|
|
import os |
|
import platform |
|
|
|
import pytest |
|
from mmcv.image import imread |
|
|
|
from mmocr.apis.inference import init_detector, model_inference |
|
from mmocr.datasets import build_dataset |
|
from mmocr.models import build_detector |
|
from mmocr.utils import revert_sync_batchnorm |
|
|
|
|
|
def build_model(config_file): |
|
device = 'cpu' |
|
model = init_detector(config_file, checkpoint=None, device=device) |
|
model = revert_sync_batchnorm(model) |
|
|
|
return model |
|
|
|
|
|
@pytest.mark.skipif( |
|
platform.system() == 'Windows', |
|
reason='Win container on Github Action does not have enough RAM to run') |
|
@pytest.mark.parametrize('cfg_file', [ |
|
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py', |
|
'../configs/textrecog/abinet/abinet_academic.py', |
|
'../configs/textrecog/crnn/crnn_academic_dataset.py', |
|
'../configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py', |
|
'../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py' |
|
]) |
|
def test_model_inference(cfg_file): |
|
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) |
|
config_file = os.path.join(tmp_dir, cfg_file) |
|
model = build_model(config_file) |
|
with pytest.raises(AssertionError): |
|
model_inference(model, 1) |
|
|
|
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') |
|
model_inference(model, sample_img_path) |
|
|
|
|
|
img = imread(sample_img_path) |
|
|
|
model_inference(model, img) |
|
|
|
|
|
@pytest.mark.skipif( |
|
platform.system() == 'Windows', |
|
reason='Win container on Github Action does not have enough RAM to run') |
|
@pytest.mark.parametrize( |
|
'cfg_file', |
|
['../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py']) |
|
def test_model_batch_inference_det(cfg_file): |
|
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) |
|
config_file = os.path.join(tmp_dir, cfg_file) |
|
model = build_model(config_file) |
|
|
|
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') |
|
results = model_inference(model, [sample_img_path], batch_mode=True) |
|
|
|
assert len(results) == 1 |
|
|
|
|
|
img = imread(sample_img_path) |
|
results = model_inference(model, [img], batch_mode=True) |
|
|
|
assert len(results) == 1 |
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [ |
|
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py', |
|
]) |
|
def test_model_batch_inference_raises_exception_error_aug_test_recog(cfg_file): |
|
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) |
|
config_file = os.path.join(tmp_dir, cfg_file) |
|
model = build_model(config_file) |
|
|
|
with pytest.raises( |
|
Exception, |
|
match='aug test does not support inference with batch size'): |
|
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') |
|
model_inference(model, [sample_img_path, sample_img_path]) |
|
|
|
with pytest.raises( |
|
Exception, |
|
match='aug test does not support inference with batch size'): |
|
img = imread(sample_img_path) |
|
model_inference(model, [img, img]) |
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [ |
|
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py', |
|
]) |
|
def test_model_batch_inference_recog(cfg_file): |
|
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) |
|
config_file = os.path.join(tmp_dir, cfg_file) |
|
model = build_model(config_file) |
|
|
|
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_recog.jpg') |
|
results = model_inference( |
|
model, [sample_img_path, sample_img_path], batch_mode=True) |
|
|
|
assert len(results) == 2 |
|
|
|
|
|
img = imread(sample_img_path) |
|
results = model_inference(model, [img, img], batch_mode=True) |
|
|
|
assert len(results) == 2 |
|
|
|
|
|
@pytest.mark.parametrize( |
|
'cfg_file', |
|
['../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py']) |
|
def test_model_batch_inference_empty_detection(cfg_file): |
|
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) |
|
config_file = os.path.join(tmp_dir, cfg_file) |
|
model = build_model(config_file) |
|
|
|
empty_detection = [] |
|
|
|
with pytest.raises( |
|
Exception, |
|
match='empty imgs provided, please check and try again'): |
|
|
|
model_inference(model, empty_detection, batch_mode=True) |
|
|