|
|
|
"""pytest tests/test_detector.py.""" |
|
import copy |
|
import tempfile |
|
from functools import partial |
|
from os.path import dirname, exists, join |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from mmocr.utils import revert_sync_batchnorm |
|
|
|
|
|
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300), |
|
num_items=None, num_classes=1): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): Input batch dimensions. |
|
|
|
num_items (None | list[int]): Specifies the number of boxes |
|
for each batch item. |
|
|
|
num_classes (int): Number of distinct labels a box might have. |
|
""" |
|
from mmdet.core import BitmapMasks |
|
|
|
(N, C, H, W) = input_shape |
|
|
|
rng = np.random.RandomState(0) |
|
|
|
imgs = rng.rand(*input_shape) |
|
|
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'scale_factor': np.array([1, 1, 1, 1]), |
|
'flip': False, |
|
} for _ in range(N)] |
|
|
|
gt_bboxes = [] |
|
gt_labels = [] |
|
gt_masks = [] |
|
gt_kernels = [] |
|
gt_effective_mask = [] |
|
|
|
for batch_idx in range(N): |
|
if num_items is None: |
|
num_boxes = rng.randint(1, 10) |
|
else: |
|
num_boxes = num_items[batch_idx] |
|
|
|
cx, cy, bw, bh = rng.rand(num_boxes, 4).T |
|
|
|
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) |
|
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) |
|
br_x = ((cx * W) + (W * bw / 2)).clip(0, W) |
|
br_y = ((cy * H) + (H * bh / 2)).clip(0, H) |
|
|
|
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T |
|
class_idxs = [0] * num_boxes |
|
|
|
gt_bboxes.append(torch.FloatTensor(boxes)) |
|
gt_labels.append(torch.LongTensor(class_idxs)) |
|
kernels = [] |
|
for kernel_inx in range(num_kernels): |
|
kernel = np.random.rand(H, W) |
|
kernels.append(kernel) |
|
gt_kernels.append(BitmapMasks(kernels, H, W)) |
|
gt_effective_mask.append(BitmapMasks([np.ones((H, W))], H, W)) |
|
|
|
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) |
|
gt_masks.append(BitmapMasks(mask, H, W)) |
|
|
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True), |
|
'img_metas': img_metas, |
|
'gt_bboxes': gt_bboxes, |
|
'gt_labels': gt_labels, |
|
'gt_bboxes_ignore': None, |
|
'gt_masks': gt_masks, |
|
'gt_kernels': gt_kernels, |
|
'gt_mask': gt_effective_mask, |
|
'gt_thr_mask': gt_effective_mask, |
|
'gt_text_mask': gt_effective_mask, |
|
'gt_center_region_mask': gt_effective_mask, |
|
'gt_radius_map': gt_kernels, |
|
'gt_sin_map': gt_kernels, |
|
'gt_cos_map': gt_kernels, |
|
} |
|
return mm_inputs |
|
|
|
|
|
def _get_config_directory(): |
|
"""Find the predefined detector config directory.""" |
|
try: |
|
|
|
repo_dpath = dirname(dirname(dirname(__file__))) |
|
except NameError: |
|
|
|
import mmocr |
|
repo_dpath = dirname(dirname(mmocr.__file__)) |
|
config_dpath = join(repo_dpath, 'configs') |
|
if not exists(config_dpath): |
|
raise Exception('Cannot find config path') |
|
return config_dpath |
|
|
|
|
|
def _get_config_module(fname): |
|
"""Load a configuration as a python module.""" |
|
from mmcv import Config |
|
config_dpath = _get_config_directory() |
|
config_fpath = join(config_dpath, fname) |
|
config_mod = Config.fromfile(config_fpath) |
|
return config_mod |
|
|
|
|
|
def _get_detector_cfg(fname): |
|
"""Grab configs necessary to create a detector. |
|
|
|
These are deep copied to allow for safe modification of parameters without |
|
influencing other tests. |
|
""" |
|
config = _get_config_module(fname) |
|
model = copy.deepcopy(config.model) |
|
return model |
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [ |
|
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py', |
|
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py', |
|
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py' |
|
]) |
|
def test_ocr_mask_rcnn(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
|
|
input_shape = (1, 3, 224, 224) |
|
mm_inputs = _demo_mm_inputs(0, input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_labels = mm_inputs.pop('gt_labels') |
|
gt_masks = mm_inputs.pop('gt_masks') |
|
|
|
|
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
gt_masks=gt_masks) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
|
|
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} |
|
img = np.random.rand(5, 5) |
|
detector.show_result(img, results) |
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [ |
|
'textdet/panet/panet_r18_fpem_ffm_600e_ctw1500.py', |
|
'textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py', |
|
'textdet/panet/panet_r50_fpem_ffm_600e_icdar2017.py' |
|
]) |
|
def test_panet(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
detector = revert_sync_batchnorm(detector) |
|
|
|
input_shape = (1, 3, 224, 224) |
|
num_kernels = 2 |
|
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_kernels = mm_inputs.pop('gt_kernels') |
|
gt_mask = mm_inputs.pop('gt_mask') |
|
|
|
|
|
losses = detector.forward( |
|
imgs, img_metas, gt_kernels=gt_kernels, gt_mask=gt_mask) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
detector.forward = partial( |
|
detector.simple_test, img_metas=img_metas, rescale=True) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
onnx_path = f'{tmpdirname}/tmp.onnx' |
|
torch.onnx.export( |
|
detector, (img_list[0], ), |
|
onnx_path, |
|
input_names=['input'], |
|
output_names=['output'], |
|
export_params=True, |
|
keep_initializers_as_inputs=False) |
|
|
|
|
|
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} |
|
img = np.random.rand(5, 5) |
|
detector.show_result(img, results) |
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [ |
|
'textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py', |
|
'textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py', |
|
'textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py' |
|
]) |
|
def test_psenet(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
detector = revert_sync_batchnorm(detector) |
|
|
|
input_shape = (1, 3, 224, 224) |
|
num_kernels = 7 |
|
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_kernels = mm_inputs.pop('gt_kernels') |
|
gt_mask = mm_inputs.pop('gt_mask') |
|
|
|
|
|
losses = detector.forward( |
|
imgs, img_metas, gt_kernels=gt_kernels, gt_mask=gt_mask) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} |
|
img = np.random.rand(5, 5) |
|
detector.show_result(img, results) |
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') |
|
@pytest.mark.parametrize('cfg_file', [ |
|
'textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py', |
|
'textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py' |
|
]) |
|
def test_dbnet(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
detector = revert_sync_batchnorm(detector) |
|
detector = detector.cuda() |
|
input_shape = (1, 3, 224, 224) |
|
num_kernels = 7 |
|
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
imgs = imgs.cuda() |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_shrink = mm_inputs.pop('gt_kernels') |
|
gt_shrink_mask = mm_inputs.pop('gt_mask') |
|
gt_thr = mm_inputs.pop('gt_masks') |
|
gt_thr_mask = mm_inputs.pop('gt_thr_mask') |
|
|
|
|
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_shrink=gt_shrink, |
|
gt_shrink_mask=gt_shrink_mask, |
|
gt_thr=gt_thr, |
|
gt_thr_mask=gt_thr_mask) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} |
|
img = np.random.rand(5, 5) |
|
detector.show_result(img, results) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
'cfg_file', |
|
['textdet/textsnake/' |
|
'textsnake_r50_fpn_unet_1200e_ctw1500.py']) |
|
def test_textsnake(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
detector = revert_sync_batchnorm(detector) |
|
input_shape = (1, 3, 224, 224) |
|
num_kernels = 1 |
|
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_text_mask = mm_inputs.pop('gt_text_mask') |
|
gt_center_region_mask = mm_inputs.pop('gt_center_region_mask') |
|
gt_mask = mm_inputs.pop('gt_mask') |
|
gt_radius_map = mm_inputs.pop('gt_radius_map') |
|
gt_sin_map = mm_inputs.pop('gt_sin_map') |
|
gt_cos_map = mm_inputs.pop('gt_cos_map') |
|
|
|
|
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_text_mask=gt_text_mask, |
|
gt_center_region_mask=gt_center_region_mask, |
|
gt_mask=gt_mask, |
|
gt_radius_map=gt_radius_map, |
|
gt_sin_map=gt_sin_map, |
|
gt_cos_map=gt_cos_map) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
maps = torch.zeros((1, 5, 224, 224), dtype=torch.float) |
|
maps[:, 0:2, :, :] = -10. |
|
maps[:, 0, 60:100, 12:212] = 10. |
|
maps[:, 1, 70:90, 22:202] = 10. |
|
maps[:, 2, 70:90, 22:202] = 0. |
|
maps[:, 3, 70:90, 22:202] = 1. |
|
maps[:, 4, 70:90, 22:202] = 10. |
|
|
|
one_meta = img_metas[0] |
|
result = detector.bbox_head.get_boundary(maps, [one_meta], False) |
|
assert 'boundary_result' in result |
|
assert 'filename' in result |
|
|
|
|
|
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} |
|
img = np.random.rand(5, 5) |
|
detector.show_result(img, results) |
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') |
|
@pytest.mark.parametrize('cfg_file', [ |
|
'textdet/fcenet/fcenet_r50dcnv2_fpn_1500e_ctw1500.py', |
|
'textdet/fcenet/fcenet_r50_fpn_1500e_icdar2015.py' |
|
]) |
|
def test_fcenet(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
detector = revert_sync_batchnorm(detector) |
|
detector = detector.cuda() |
|
|
|
fourier_degree = 5 |
|
input_shape = (1, 3, 256, 256) |
|
(n, c, h, w) = input_shape |
|
|
|
imgs = torch.randn(n, c, h, w).float().cuda() |
|
img_metas = [{ |
|
'img_shape': (h, w, c), |
|
'ori_shape': (h, w, c), |
|
'pad_shape': (h, w, c), |
|
'filename': '<demo>.png', |
|
'scale_factor': np.array([1, 1, 1, 1]), |
|
'flip': False, |
|
} for _ in range(n)] |
|
|
|
p3_maps = [] |
|
p4_maps = [] |
|
p5_maps = [] |
|
for _ in range(n): |
|
p3_maps.append( |
|
np.random.random((5 + 4 * fourier_degree, h // 8, w // 8))) |
|
p4_maps.append( |
|
np.random.random((5 + 4 * fourier_degree, h // 16, w // 16))) |
|
p5_maps.append( |
|
np.random.random((5 + 4 * fourier_degree, h // 32, w // 32))) |
|
|
|
|
|
losses = detector.forward( |
|
imgs, img_metas, p3_maps=p3_maps, p4_maps=p4_maps, p5_maps=p5_maps) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} |
|
img = np.random.rand(5, 5) |
|
detector.show_result(img, results) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
'cfg_file', ['textdet/drrg/' |
|
'drrg_r50_fpn_unet_1200e_ctw1500.py']) |
|
def test_drrg(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
detector = revert_sync_batchnorm(detector) |
|
|
|
input_shape = (1, 3, 224, 224) |
|
num_kernels = 1 |
|
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_text_mask = mm_inputs.pop('gt_text_mask') |
|
gt_center_region_mask = mm_inputs.pop('gt_center_region_mask') |
|
gt_mask = mm_inputs.pop('gt_mask') |
|
gt_top_height_map = mm_inputs.pop('gt_radius_map') |
|
gt_bot_height_map = gt_top_height_map.copy() |
|
gt_sin_map = mm_inputs.pop('gt_sin_map') |
|
gt_cos_map = mm_inputs.pop('gt_cos_map') |
|
num_rois = 32 |
|
x = np.random.randint(4, 224, (num_rois, 1)) |
|
y = np.random.randint(4, 224, (num_rois, 1)) |
|
h = 4 * np.ones((num_rois, 1)) |
|
w = 4 * np.ones((num_rois, 1)) |
|
angle = (np.random.random_sample((num_rois, 1)) * 2 - 1) * np.pi / 2 |
|
cos, sin = np.cos(angle), np.sin(angle) |
|
comp_labels = np.random.randint(1, 3, (num_rois, 1)) |
|
num_rois = num_rois * np.ones((num_rois, 1)) |
|
comp_attribs = np.hstack([num_rois, x, y, h, w, cos, sin, comp_labels]) |
|
gt_comp_attribs = np.expand_dims(comp_attribs.astype(np.float32), axis=0) |
|
|
|
|
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_text_mask=gt_text_mask, |
|
gt_center_region_mask=gt_center_region_mask, |
|
gt_mask=gt_mask, |
|
gt_top_height_map=gt_top_height_map, |
|
gt_bot_height_map=gt_bot_height_map, |
|
gt_sin_map=gt_sin_map, |
|
gt_cos_map=gt_cos_map, |
|
gt_comp_attribs=gt_comp_attribs) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
model['bbox_head']['in_channels'] = 6 |
|
model['bbox_head']['text_region_thr'] = 0.8 |
|
model['bbox_head']['center_region_thr'] = 0.8 |
|
detector = build_detector(model) |
|
maps = torch.zeros((1, 6, 224, 224), dtype=torch.float) |
|
maps[:, 0:2, :, :] = -10. |
|
maps[:, 0, 60:100, 50:170] = 10. |
|
maps[:, 1, 75:85, 60:160] = 10. |
|
maps[:, 2, 75:85, 60:160] = 0. |
|
maps[:, 3, 75:85, 60:160] = 1. |
|
maps[:, 4, 75:85, 60:160] = 10. |
|
maps[:, 5, 75:85, 60:160] = 10. |
|
|
|
with torch.no_grad(): |
|
full_pass_weight = torch.zeros((6, 6, 1, 1)) |
|
for i in range(6): |
|
full_pass_weight[i, i, 0, 0] = 1 |
|
detector.bbox_head.out_conv.weight.data = full_pass_weight |
|
detector.bbox_head.out_conv.bias.data.fill_(0.) |
|
outs = detector.bbox_head.single_test(maps) |
|
boundaries = detector.bbox_head.get_boundary(*outs, img_metas, True) |
|
assert len(boundaries) == 1 |
|
|
|
|
|
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} |
|
img = np.random.rand(5, 5) |
|
detector.show_result(img, results) |
|
|