|
|
|
import pytest |
|
import torch |
|
|
|
from mmocr.models.textrecog.backbones import (ResNet, ResNet31OCR, ResNetABI, |
|
ShallowCNN, VeryDeepVgg) |
|
|
|
|
|
def test_resnet31_ocr_backbone(): |
|
"""Test resnet backbone.""" |
|
with pytest.raises(AssertionError): |
|
ResNet31OCR(2.5) |
|
|
|
with pytest.raises(AssertionError): |
|
ResNet31OCR(3, layers=5) |
|
|
|
with pytest.raises(AssertionError): |
|
ResNet31OCR(3, channels=5) |
|
|
|
|
|
model = ResNet31OCR() |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 32, 160) |
|
feat = model(imgs) |
|
assert feat.shape == torch.Size([1, 512, 4, 40]) |
|
|
|
|
|
def test_vgg_deep_vgg_ocr_backbone(): |
|
|
|
model = VeryDeepVgg() |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 32, 160) |
|
feats = model(imgs) |
|
assert feats.shape == torch.Size([1, 512, 1, 41]) |
|
|
|
|
|
def test_shallow_cnn_ocr_backbone(): |
|
|
|
model = ShallowCNN() |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 1, 32, 100) |
|
feat = model(imgs) |
|
assert feat.shape == torch.Size([1, 512, 8, 25]) |
|
|
|
|
|
def test_resnet_abi(): |
|
"""Test resnet backbone.""" |
|
with pytest.raises(AssertionError): |
|
ResNetABI(2.5) |
|
|
|
with pytest.raises(AssertionError): |
|
ResNetABI(3, arch_settings=5) |
|
|
|
with pytest.raises(AssertionError): |
|
ResNetABI(3, stem_channels=None) |
|
|
|
with pytest.raises(AssertionError): |
|
ResNetABI(arch_settings=[3, 4, 6, 6], strides=[1, 2, 1, 2, 1]) |
|
|
|
|
|
model = ResNetABI() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 32, 160) |
|
feat = model(imgs) |
|
assert feat.shape == torch.Size([1, 512, 8, 40]) |
|
|
|
|
|
def test_resnet(): |
|
"""Test all ResNet backbones.""" |
|
|
|
resnet45_aster = ResNet( |
|
in_channels=3, |
|
stem_channels=[64, 128], |
|
block_cfgs=dict(type='BasicBlock', use_conv1x1='True'), |
|
arch_layers=[3, 4, 6, 6, 3], |
|
arch_channels=[32, 64, 128, 256, 512], |
|
strides=[(2, 2), (2, 2), (2, 1), (2, 1), (2, 1)]) |
|
|
|
resnet45_abi = ResNet( |
|
in_channels=3, |
|
stem_channels=32, |
|
block_cfgs=dict(type='BasicBlock', use_conv1x1='True'), |
|
arch_layers=[3, 4, 6, 6, 3], |
|
arch_channels=[32, 64, 128, 256, 512], |
|
strides=[2, 1, 2, 1, 1]) |
|
|
|
resnet_31 = ResNet( |
|
in_channels=3, |
|
stem_channels=[64, 128], |
|
block_cfgs=dict(type='BasicBlock'), |
|
arch_layers=[1, 2, 5, 3], |
|
arch_channels=[256, 256, 512, 512], |
|
strides=[1, 1, 1, 1], |
|
plugins=[ |
|
dict( |
|
cfg=dict(type='Maxpool2d', kernel_size=2, stride=(2, 2)), |
|
stages=(True, True, False, False), |
|
position='before_stage'), |
|
dict( |
|
cfg=dict(type='Maxpool2d', kernel_size=(2, 1), stride=(2, 1)), |
|
stages=(False, False, True, False), |
|
position='before_stage'), |
|
dict( |
|
cfg=dict( |
|
type='ConvModule', |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU')), |
|
stages=(True, True, True, True), |
|
position='after_stage') |
|
]) |
|
img = torch.rand(1, 3, 32, 100) |
|
|
|
assert resnet45_aster(img).shape == torch.Size([1, 512, 1, 25]) |
|
assert resnet45_abi(img).shape == torch.Size([1, 512, 8, 25]) |
|
assert resnet_31(img).shape == torch.Size([1, 512, 4, 25]) |
|
|