|
|
|
import copy |
|
from os.path import dirname, exists, join |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
|
|
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300), |
|
num_items=None): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): Input batch dimensions. |
|
|
|
num_items (None | list[int]): Specifies the number of boxes |
|
for each batch item. |
|
""" |
|
|
|
(N, C, H, W) = input_shape |
|
|
|
rng = np.random.RandomState(0) |
|
|
|
imgs = rng.rand(*input_shape) |
|
|
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'resize_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'text': 'hello', |
|
'valid_ratio': 1.0, |
|
} for _ in range(N)] |
|
|
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True), |
|
'img_metas': img_metas |
|
} |
|
return mm_inputs |
|
|
|
|
|
def _demo_gt_kernel_inputs(num_kernels=3, input_shape=(1, 3, 300, 300), |
|
num_items=None): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): Input batch dimensions. |
|
|
|
num_items (None | list[int]): Specifies the number of boxes |
|
for each batch item. |
|
""" |
|
from mmdet.core import BitmapMasks |
|
|
|
(N, C, H, W) = input_shape |
|
gt_kernels = [] |
|
|
|
for batch_idx in range(N): |
|
kernels = [] |
|
for kernel_inx in range(num_kernels): |
|
kernel = np.random.rand(H, W) |
|
kernels.append(kernel) |
|
gt_kernels.append(BitmapMasks(kernels, H, W)) |
|
|
|
return gt_kernels |
|
|
|
|
|
def _get_config_directory(): |
|
"""Find the predefined detector config directory.""" |
|
try: |
|
|
|
repo_dpath = dirname(dirname(dirname(__file__))) |
|
except NameError: |
|
|
|
import mmocr |
|
repo_dpath = dirname(dirname(mmocr.__file__)) |
|
config_dpath = join(repo_dpath, 'configs') |
|
if not exists(config_dpath): |
|
raise Exception('Cannot find config path') |
|
return config_dpath |
|
|
|
|
|
def _get_config_module(fname): |
|
"""Load a configuration as a python module.""" |
|
from mmcv import Config |
|
config_dpath = _get_config_directory() |
|
config_fpath = join(config_dpath, fname) |
|
config_mod = Config.fromfile(config_fpath) |
|
return config_mod |
|
|
|
|
|
def _get_detector_cfg(fname): |
|
"""Grab configs necessary to create a detector. |
|
|
|
These are deep copied to allow for safe modification of parameters without |
|
influencing other tests. |
|
""" |
|
config = _get_config_module(fname) |
|
model = copy.deepcopy(config.model) |
|
return model |
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [ |
|
'textrecog/sar/sar_r31_parallel_decoder_academic.py', |
|
'textrecog/sar/sar_r31_parallel_decoder_toy_dataset.py', |
|
'textrecog/sar/sar_r31_sequential_decoder_academic.py', |
|
'textrecog/crnn/crnn_toy_dataset.py', |
|
'textrecog/crnn/crnn_academic_dataset.py', |
|
'textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py', |
|
'textrecog/nrtr/nrtr_modality_transform_academic.py', |
|
'textrecog/nrtr/nrtr_modality_transform_toy_dataset.py', |
|
'textrecog/nrtr/nrtr_r31_1by8_1by4_academic.py', |
|
'textrecog/robust_scanner/robustscanner_r31_academic.py', |
|
'textrecog/seg/seg_r31_1by16_fpnocr_academic.py', |
|
'textrecog/seg/seg_r31_1by16_fpnocr_toy_dataset.py', |
|
'textrecog/satrn/satrn_academic.py', 'textrecog/satrn/satrn_small.py', |
|
'textrecog/tps/crnn_tps_academic_dataset.py' |
|
]) |
|
def test_recognizer_pipeline(cfg_file): |
|
model = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmocr.models import build_detector |
|
detector = build_detector(model) |
|
|
|
input_shape = (1, 3, 32, 160) |
|
if 'crnn' in cfg_file: |
|
input_shape = (1, 1, 32, 160) |
|
mm_inputs = _demo_mm_inputs(0, input_shape) |
|
gt_kernels = None |
|
if 'seg' in cfg_file: |
|
gt_kernels = _demo_gt_kernel_inputs(3, input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
|
|
|
|
if 'seg' in cfg_file: |
|
losses = detector.forward(imgs, img_metas, gt_kernels=gt_kernels) |
|
else: |
|
losses = detector.forward(imgs, img_metas) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
|
|
results = {'text': 'hello', 'score': 1.0} |
|
img = np.random.rand(5, 5, 3) |
|
detector.show_result(img, results) |
|
|